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CHAPTER 1Introduction and background1. PhilosophyGiven an n-dimensional manifoldX, there are several ways to relate the structureof X to manifolds Wm of lower dimension m. For instance, one can consider the m-dimensional submanifoldsWm ofX, for example, and ask in which ways the topologyand structure of Wm are inherited from that of X. Alternatively, one can change thetopology and structure of X by \gluing" more manifolds Wm to the boundary @X.When one works in Several Complex Variables, the manifolds X of interest arethose manifolds which carry with them a complex (or related) structure of somenature: complex analytic structure, symplectic structure, a Cauchy-Riemann (C-R)stucture, q-convex structure, or Stein structure. If X is a manifold embedded in C kfor some k, it can automatically inherit a complex structure from the ambient space.In the case of Stein manifolds X, for example, it is always possible to embed X in anambient space, but even here it is still normally more useful to think of the complexstructure as being intrinsic.In this thesis, I consider two problems relating lower-dimensional manifolds tohigher-dimensional manifolds with complex structure:Question. Given a complex analytic manifold X, what conditions do we needon X so that for every point p 2 X there is a Stein manifold M without boundarysuch that p 2M � X?The question is equivalent to asking when, for every point p in X, there is a wayof �nding p in a complex line within X. I have shown that it is possible to do sofor a large subclass of q-convex manifolds called q-complete manifolds. For thesemanifolds, we can �nd p in a proper holomorphic image F (�) of the unit disc in X.1



Question. IfX is a strictly pseudoconvex domain (and hence a forteriori a Steinmanifold), how can we attach lower-dimensional manifolds � to it in such a way thatthe complex structure is preserved for the union of the manifolds X and �?Assume � is \totally real" - that is, has no complex structure of its own. If � alsosatis�es certain tangency conditions on the set where where � meets the boundary@X of X, then this thesis provides a proof that � can inherit complex structure fromX. We say that � is a \handle" which has been \glued" to X.Chapter 2 addresses the �rst of these two questions, and Chapter 3 addresses thesecond. The treatment in Chapter 2 extends arguments due to Forstneri�c, Globevnikand Stens�nes to the case of q-complete manifolds. The argument draws on manyaspects of complex analysis, and uses two lemmas that extend the clever (and com-plicated) main lemmas from [7] and [15].In contrast, the treatment of handles in Chapter 3 is entirely elementary. First,the \standard" handle (comprised of the unit ball and a at plane in C 2) is shown tohave a neighborhood basis of strictly pseudoconvex sets. This initial demonstrationdepends only on symmetry arguments and some elementary analysis. The result isextended to higher dimensions and more general strictly pseudoconvex domains byviewing them as locally similar to the canonical case of the standard handle.2. Previous research2.1. Proper Embeddings. The existence of a proper holomorphic map F froma domain D to another domain or manifold 
 has long been a matter of interest tothose who study Several Complex Variables. (For an excellent review paper, see[6]). The fact that F is holomorphic means that the complex structure of F (D) (andthereforeD) is inherited from that of 
. Properness of F ensures that no informationon D is lost, and that we can therefore consider the complex structure of D itself asbeing inherited from that of 
. It also implies that F (D) is closed in 
.In a paper published in 1992, Forstneri�cand Globevnik [7] showed the following:For any pseudoconvex domain 
 � C n with C 2 boundary and any prescribed pointp 2 
, it is possible to �nd a proper holomorphic map F from the unit disc � � Cinto 
 such that F (0) = p. Furthermore, if a direction � is given, F can be found2



such that F 0(0) = b� for some b > 0. Also in 1992, Berit Stens�nes [15] extendedthis result to the case of any Stein manifold of dimension � 2, and in this thesis, itis extended to the class of q-complete manifolds.2.2. Handles. In 1977, Forn�ss and Stout [4] showed that, for any pseudo-convex domain 
 and strictly pseudoconvex point p 2 @
, one can attach a one-dimensional \handle" to 
 in the sense that there exists a Stein neighborhood basisfor the set 
 [ L, where L is the line through p perpindicular to @
.In 1990, Yakov Eliashberg [3] extended this result considerably in a paper whereinhe showed that a Stein manifold X of complex dimension n with an exhaustionfunction that has critical points of index � n admits a �ltrationX1 �� X2 �� : : : �� Xnby Stein manifolds Xi where each Xi arises from Xi�1 by attaching handles of di-mension no greater than i. His paper contained, as a crucial lemma, the idea thatone can attach higher dimensional handles to compact complex manifolds with pseu-doconvex boundary, and hence in particular to pseudoconvex domains. The proof isdi�cult, however, and is aimed only at attaching handles up to topological equiva-lence, so this thesis provides a more elementary, concrete demonstration for strictlypseudoconvex domains. 3. Basic de�nitionsThe following concepts will be used throughout this thesis. Where possible, thenotation of these de�nitions will also be preserved.Definition 3.1. A map f is proper if the preimage of any compact set in therange of f is compact in the domain of f . Intuitively, this is means that the boundaryof the domain of f must be mapped into the boundary of the range.Definition 3.2. f(z) = (f1(z1; : : : ; zn); : : : ; fm(z1; : : : ; zn)) is a holomorphicmap if each of the coordinate functions fj are holomorphic, i.e. if each fj is an-alytic in each variable seperately.Definition 3.3. A de�ning function for a domain 
 is a continuous function� : C n ! R such that 
 = fz : �(z) < 0g and r� 6= 0 on @
. An exhaustion function3



is a continuous function � : C n ! R such that if we set 
c = fz : � (z) < cg, then
 = Sm2N
m, and the level sets satisfy 
c �� 
c+a for all a 2 R.Definition 3.4. A vector � in C n n f0g is complex tangent to the boundary of
 at p if it satis�es the equation P @�@zi ���p �i = 0 where � is a C2 de�ning function for
 at p.Definition 3.5. A C2 function � is plurisubharmonic at z in C n if its Levi formsatis�es L�(z; �) = nPj;k=1 @2�@zj@zk�j�k � 0 for all complex directions � 2 C n n f0g { thatis, if � @2�@zj@zk � is a positive semide�nite matrix.Definition 3.6. A C2 function � is q-subharmonic at z in C n if � @2�@zj@zk � has atleast q distinct eigenvectors with positive eigenvalues.Definition 3.7. The Levi polynomial Lp for � at p is the second degree polyno-mial nPj=1 @�@zj ���p (zj � pj) + 12 nPj;k=1 @2�@zj@zk ���p (zj � pj) (zk � pk). The Levi support surfacefor � at p is the surface of 2n � 1 real dimensions de�ned by the equation Lp = 0.Note that if � is plurisubharmonic then the point p is a local minimum for � on theLevi support surface.Definition 3.8. A domain 
 is pseudoconvex if there exists a plurisubharmonicexhaustion function � for 
. That is, � is a function such that the level sets 
c =fz : �(z) < cg are all relatively compact in 
 and �(z) is plurisubharmonic for allp 2 @
. We say 
 is pseudoconvex in the sense of Levi if there exists a C2 de�ningfunction � such that r�j@
 6= 0 and for all p 2 @
 and complex tangent vectors � to@
 at p, the Levi form nPj;k=1 @2�@zj@zk�j�k � 0. Note that pseudoconvexity in the senseof Levi automatically implies pseudoconvexity, but that the converse is true only if@
 is C2 smooth.Definition 3.9. A domain 
 is q-convex if there exists an exhaustion function� for 
 which is q-subharmonic on all but a compact subset of points V
 in 
. Amanifold X is q-convex if it admits an exhaustion function which is q-subharmonicon all but a compact subset of points VX in X.4



Definition 3.10. If the inequalities in De�nitions 3.5, 3.6, 3.8 and 3.9 arestrict, then they de�ne (respectively) the terms: strictly plurisubharmonic, strictlyq-subharmonic, strictly pseudoconvex, and strictly q-convex.Definition 3.11. A Stein manifold M is a complex analytic manifold with astrictly plurisubharmonic exhaustion function � such thatMc = fz 2M : �(z) < cg ��Mfor all c, and the set of functions ff : f is holomorphic on Mg seperates points.

5



CHAPTER 2Disc Embeddings1. OverviewOur goal here is to prove that the broad class of complex analytic manifoldsknown as q-complete manifolds have the property that a proper analytic disk can befound through any prescribed point inside them.Definition 1.1. Let 
 be a �-�nite complex analytic manifold which admits asmooth exhaustion function �. Assume that for all z in 
, � has a Levi form L withq strictly positive eigenvectors, all perpindicular to r� when r� 6= 0 or q + 1 strictlypositive eigenvectors when r� = 0. If, in addition, the holomorphic functions on 
seperate points, then we say that 
 is q-complete.Example 1. Assume 
 is a smooth 2-convexmanifold on which the holomorphicfunctions separate points, and the compact set V
 on which the exhaustion functionfails to be q-subharmonic is empty. Then 
 is 1-complete.The key for a holomorphic map from � into 
 (also known as an analytic disk)to be proper is for it to take the boundary of the disk to the boundary of 
. Hencethe idea of this proof is to begin with a small analytic disk through p with thecorrect derivative, and then to use it as the �rst in a sequence of analytic diskswhose boundaries are pulled out closer and closer to the boundary of 
. We proceedby means of a series of lemmas, each of which begins with an old analytic disk andcertain conditions and provides a new analytic disk whose boundary is closer to thatof 
. Finally, we take a limit of these disks, which will be proper.Structurally, Lemmas 2.9 and 2.10 provide the basic tool for \pulling" an oldanalytic disk out to the new one. Lemma 2.11 uses this tool when critical points of� are not nearby, while Lemmas 2.13 through 2.17 set up Lemma 2.18 to do so neara critical point. 6



Our work in Lemma 2.18 requires the following lemma, which adapts the proofof Theorem 1.4.15 in [9] to the case of q-subharmonic functions. It will allow us towrite down a standard form for � in a neighborhood of any point { in particular neara critical point of �.Lemma 1.2. If � is a q-subharmonic C2 function in a neighborhood of 0 in C n ,then there exists a complex linear isometry t : C n ! C n and f�jgqj=1 where �j � 0such that (with zj = xj + ixq+j when j � q), @2� � t(0)@xj@xk !2qj;k=1 =  Iq + � 00 Iq ��!(1.1)where Iq is the q� q identity matrix and � is the q � q diagonal matrix with entries�j . Proof. Since the Levi matrix L = � @2�(0)@zj@zk �nj;k=1 has q positive eigenvectors, thereexists an invertible complex matrix V such thatV tLV = (�jk)qj;k=1 + (��jk)nj;k=q+1= Iq+`;mwhere Iq+`;m is a (q + `;m) signature matrix of the form0B@Iq+` 0 00 �Im 00 0 01CAfor some ` � 0 and m � n� q� `. Let v be the complex linear isomorphism de�nedby V .Without loss of generality, �(0) = 0 and d�(0) = 0, so that the Levi polynomialfor � at 0 is simply P @2�(0)@zj@zk zjzk and the Taylor expansion for � at 0 is given by�(z) = jz1j2 + � � � + jzqj2 � jzq+1j2 � jznj2 + <24 nXj;k=1 @2�(0)@zj@zk zjzk35+ o �jzj2�= jz1j2 + � � � + jzqj2 + <24 qXj;k=1 @2�(0)@zj@zk zjzk| {z }L 35+O (jz0j � jzj) +O �jzj2�where z0 = (zq+1; : : : ; zn). The essential di�erence between this and our goal inEquation (1.1) is the nonzero cross terms in the truncated Levi polynomial L. Ourtask is to �nd a complex linear isometry u that will diagonalize its matrix.7



Take real and imaginary parts of the matrix for the truncated Levi polynomial: @2�(0)@zj@zk!qj;k=1 = A+ iBand de�ne a real 2q � 2q matrix R by R =  A �B�B �A! (where A and B are realn � n matrices). For notational purposes, we let yj = xq+j so that we may alsowrite zj = xj + iyj. Also, let x = x(z) = (x1; : : : ; xq) and y = (y1; : : : ; yq). Since@@zj = 12 � @@xj � i @@yj � and4 @2�(0)@zj@zk =  @2�(0)@xj@xk � @2�(0)@yj@yk!� i @2�(0)@xj@yk + @2�(0)@yj@xk! ;we see that< " @2�(0)@zj@zk zjzk# =  @2�(0)@xj@xk � @2�(0)@yj@yk! (xjxk � yjyk)� i @2�(0)@xj@yk + @2�(0)@yj@xk! (ixjyk + iyjxk)=  @2�(0)@xj@xk � @2�(0)@yj@yk! (xjxk) +  @2�(0)@xj@yk + @2�(0)@yj@xk! (xjyk + yjxk)�  @2�(0)@xj@xk � @2�(0)@yj@yk! (yjyk)) <24 qXj;k=1 @2�(0)@zj@zk zjzk35 = (A � x;x) � (iB � x; iy) � (iB � y; ix) � (A � y;y):Thus <24 qXj;k=1 @2�(0)@zj@zk zjzk35 = (R � x;x)and �(x) = (x+R � x;x) +O (jz0j � jzj) :Note that R is a real symmetric matrix, so all of its eigenvalues are real. Ifx = x(e) is an eigenvector of R with eigenvalue � thenx(ie) = (�xq+1; : : : ;�x2q; x1; : : : ; xq)is an eigenvector of  �A +B+B +A! with eigenvalue � and hence a eigenvector of R witheigenvalue ��.From Chapter 7, Theorem 2.9 in [1], there exists an orthonormal basis of eigen-vectors xj for R. Choose e1; : : : ; eq in C q�(0; : : : ; 0| {z }n�q times), jejj = 1 so that xj = x(ej) is an8



eigenvector of R with eigenvalue �j � 0. Since the xj are orthogonal, so are the ej.Complete fejg to an orthonormal basis for C n by letting ej = (0; : : : ; 0; 1; 0; : : : ; 0)be the remaining unit vectors in the directions of the zj axes when j > q.Let u be the complex linear map de�ned by u(z) = P zjej. Then since the ejform an orthonormal basis for C n , u is unitary. In terms of x, u is represented bythe matrix U := 0BB@x1(e1) : : : x1(eq) x1(ie1) : : : x1(ieq)... ... ... ...xq(e1) : : : xq(eq) xq(ie1) : : : xq(ieq)1CCADe�ne � to be q� q the diagonal matrix with entries �j . Then note that the matrixU was chosen to diagonalize R, so thatU�1RU = 0BBBBBBBBB@�1 . . . 0�q ��10 . . . ��q1CCCCCCCCCA = �� (��):We have�(v � u(z)) = (U � x+RU � x; U � x) = �U�1U � x+ U�1RU � x;x�= (x+ [�� (��)] � x;x) = (x;x) + ([�� (��)] � x;x)= qXj=1 jxjj2 + qXj=1 �j jxjj2 � 2qXj=q+1 jxjj2 � qXj=1 �jjxq+j j2= qXj=1(1 + �j)jxjj2 + 2qXj=q+1(�1 + �j�q)jxjj2(1.2)
with an error of O (jz0j � jzj; jzj2). Complete the proof by setting t = v � u.2. Results for q-complete domainsTheorem 2.1. Let 
 be a q-complete manifold, q � 1 with exhaustion function�. Let p 2 
 and X a complex tangent to M at p. Then there exists F : � ! 
such that F is proper, F (0) = p, and F 0(0) = �X for some � > 0.That is, given any q-complete manifold 
 and any prescribed point p 2 
, aproper analytic disc passes through p. 9



Corollary 2.2. Let 
 be a smoothly bounded q-complete domain in C n . Letp 2 
 and X a complex direction. Then there exists F : � ! 
 such that F isproper, F (0) = p, and F 0(0) = �X for some � > 0.Remark 2.3. Since the most di�cult case is that where q = 1, it su�ces toprove the theorem for q = 1.According to Morse's theorem, since 
 is a complex analytic manifold, there existsan exhaustion function for 
 whose set of critical points contains no accumulationpoint. In particular, one can assume that if p is a critical point of � then there existsan open interval I about �(p) 2 R such that there exists no critical point q of � with�(q) 2 I.Definition 2.4. From Theorem 5.3.6 in [10] and De�nition 1.1, there exists aholomorphic, regular, 1� 1 embedding E : 
! C N for some N . Let 
� be an openneighborhood of E(
) in C N with a holomorphic retraction � : 
� ! E(
).Notation. Throughout this section, we will have the following:� We take 
, 
�, �, and E as in De�nition 2.4.� When r�jz 6= 0 we let e1 = e1(z) be the unit vector in the directionof r�jz. When r�jz = 0 it is a unit eigenvector of L in one of thetwo or more directions for which the Levi form L�(z; e1) for � ispositive.� For each z 2 
, e2 = e2(z) is a unit eigenvector of L in a direc-tion perpindicular to e1 for which the Levi form L�(z; e2) for � ispositive.� The symbol � denotes the open unit disk in C .� The symbol 
t denotes the level set fz 2 
 : �(z) < tg for t 2 R.� The maps F and G are always of type F;G : �! 
, continuouson �, and analytic on �.� If f is a map, and a set S is in the domain of f , then f(S) denotesthe set fz 2 Range(f) : f(s) = z for some s 2 Sg. If the rangeof f is a subset of R, then we write a < f(S) < b if and only ifa < f(s) < b for all s 2 S. 10



Definition 2.5. Two maps F and G are said to match if F (0) = G(0) andF 0(0) = G0(0).Definition 2.6. Given a q-completemanifold 
 with exhaustion function � andembedding E, we say that G is (�;R)-close to F if G matches F , �(G(z))��(F (z)) >�� for all z 2 �, and jE(G(z))� E(F (z))j < � for all z 2 � with jzj < R.Lemma 2.7. If 0 =2 Crit(�), then there exists another function ~� such that@
0 = fz : ~�(z) = 0gand such that for all z in a neighborhood of @
0, both L~�(z; e2) and L~�(z; e1) arestrictly positive. That is, ~� is 2-subharmonic near @
0.Proof. Consider functions of the form~�(z) = �(z) +A�2(z)for constant A > 0. Take z 2 @
0. We haveL~�(z; e2) = L�(z; e2) + 2A�L�(z; e2) + 2Ajr� � e2j2= L�(z; e2)since � = 0 on @
0 and e2 is chosen such that r� � e2 = 0. Also,L~�(z; e1) = L�(z; e1) + 2A�L�(z; e1) + 2Ajr� � e1j2= L�(z; e1) + 2Ajr�j2so by choosing A such that A > maxz2@
0 �����L�(z; e1)2jr�j2 �����we obtain a new de�ning function of 
0 in a neighborhood of @
0 with positive Leviform in the directions e1 and e2.The following extension of a fact from [7] allows us to \trim back" an analyticdisk to a level set of �. That is, the intersection D of an analytic disk with a levelset of � is itself an analytic disk, by virtue of the fact that we can use the Riemannmapping theorem to map � into the preimage of D. Thus, this lemma will allow usto assume that the boundaries of our analytic disks lie on level sets for �. In light ofLemma 2.7, and the fact that the rest of our lemmas are local with respect to levelsets of �, we can assume in the rest of this section that L�(z; e1) > 0.11



�F (�)G(�) = (F +H)(�)pFigure 2.1. \Pulling" the boundary of an analytic diskLemma 2.8. Given an analytic map F : � ! 
 with �(F (0)) = a, and a realnumber b > a, there exists an analytic map G : �! 
 equal to F on F�1 (
b) suchthat G(@�) � 
b. If �(F (@�)) > b, then �(G(@�)) = b.Proof. The �rst paragraph of the proof of Lemma 1 in [7] may be used verbatim.We now want to construct the basic process for \pulling" the boundary of F (�)toward the boundary of 
 (Figure 2.1). The idea is that, as long as we are increasing� on the boundary of the image F (@�), it is getting closer to the boundary of 
.How might we increase �? Observe that in local coordinates the Taylor series for �about a point p0 is�(p) = �(p0) + Lp0(p � p0) + L(p0; p � p0) + o(jp � p0j2):If we consider � restricted to the Levi support surface fLp0(z) = 0g, then�(p) = �(p0) + L(p0; p � p0) + o(jp � p0j2):Assume that we know p� p0 lies in one of the directions for which the Levi formL(p0; p � p0) is strictly positive. Then we obtain, for some c > 0, L(p0; p � p0) >cjp� p0j2, or �(p) > �(p0) + 12cjp� p0j2(2.1)for p su�ciently close to p0.Although we cannot directly choose a point p to which to pull @�, we can never-theless use this idea to accomplish our actual goal: to increase � on @�. A small diskimage about p lying simultaneously in the Levi support surface and in a direction forwhich L is positive would have � larger on its boundary than at the origin. Simply12



by knowing that we had pulled @� to any boundary point of that disk, we wouldknow that we had increased �. Equation (2.1) shows that the amount of this increasedepends (when p is close to p0) only on the radius of the disk.By placing small analytic disk images �� all around the boundary F (@�), andpulling to their respective boundaries, we obtain a method for increasing � at theboundary of �. Below, Lemma 2.9 provides the \pulling" technique, while Lemma2.10 provides a way of placing the disk images at boundary points. What obstructionscan we �nd to the size of the increase of �? (This is equivalent to asking what limitsthe radii of the disk images ��.)First of all, we need the second-degree approximation ignoring the error o(jp�p0j2)to be accurate all around the boundary of the disk images. The error is a functionthat depends on the third and higher derivatives of �, and can be bounded, say, inany compact subset of 
. Second, technical limitations in Lemma 2.9 limit the sizeof the disk images depending on the embedding E of 
 and the sizes of coordinateneighborhoods for 
.Finally, and most vital to our analysis, is the requirement that the disk imageslie in Levi support surfaces. For the disk images to be chosen smoothly means thatthey must be 1-dimensional manifolds, so the Levi support surface in which they lieshould themselves be regular manifolds. So long as p0 is not a critical point of �, thisis possible { locally, at least. However, the Levi support surfaces cease to be regularmanifolds as they approach a critical point, so the maximum size of a disk image atp0 is limited by the proximity of p0 to a critical point of �.This last obstruction illustrates the basic dichotomy between regular points andcritical points that a�ects our construction. Disks can be pulled using the methodoutlined above, so long as no critical points are nearby. The problem of increasing� near a critical point, though, will the require special treatment in Lemmas 2.13through 2.18.Lemma 2.9. Suppose F is as above, with constants �; � > 0 and 0 < R < 1, anda collection of smooth holomorphic maps �� : �! 
 such that �� varies smoothlywith � 2 @� with ��(0) = F (�). Suppose also that we have r0 such that each disk13



image ��(�) satis�es the size conditionjE(F (�))� E(��(w))j < r0:for all � 2 @� and w 2 �, with r so small that for all z 2 E(F (�)), Br0(z) �� 
�.Then there exists a holomorphic G : � ! 
 which is (�;R)-close to F , so thatfor each � 2 @�, there exists � 2 @� such thatjE(G(�)) � E(��(�))j < �:Proof. De�ne H(�; w) : @��� �! C Nby H(�; w) = E (��(w))� E (F (�)) :Let 1Xj=0 aj(�)wjbe the Weierstrass polynomial for H. Note that H(�; 0) = 0, so a0 = 0. For m 2 N,we de�ne Hm(�; w) = mXj=1 aj(�)wjand we let �(m) = max@��� jH(�; w)�Hm(�; w)j:Observe that limm!1 �(m) = 0, so that this cuto� approximation can be madearbitrarily accurate. Note that on @�, � = 1=�, so for each j we choose polynomialsP 1j : : : PNj and Q1j : : : QNj such that forPj (�) = �P 1j (�) ; : : : ; PNj (�)�and Qj (1=�) = �Q1j (1=�) ; : : : ; QNj (1=�)�we have jaj(�)�Pj(�)�Qj(1=�)j < �(m)m :Let ` 2 N be greater than the degree of any of the Qkj , and de�ne the polynomialfm(�) = mXj=1 [Pj(�) +Qj(1=�)] �j`:14



Then since ` is so large, no negative powers of � occur in fm, hence fm is de�ned(and bounded) for all � 2 �.We also have ���fm(�) �H(�; �`)��� < �(m) +m�(m)m = 2�(m);(2.2)for � 2 @�, so the fm form an arbitrarily close approximation to H. fm will give the\bump" function we add to F , so we also want to make sure that it changes F verylittle inside jzj < R in order to keep our new \bumped" analytic disk (�;R)-close toF (�). Take  to be so small that for z 2 E(F (�)), we have����(F (z))� � � E�1 � � (E(F (z)) + t)��� < � for all t 2 BN � C NBy choosing ` su�ciently large, we ensure thatfm(z) <  for all jzj < R:(2.3)and that f(0) = f 0(0) = 0. Equation (2.2) implies���� (E(F (�)) + fm(�))� E(F (�))�H(�; �`)���! 0 as m!1for � 2 @�. Choose m so large that���� (E(F (�)) + fm(�))� E(F (�))�H(�; �`)��� < �for all � 2 @�. We de�neG(z) = E�1 � � (E(F (z)) + fm (z)) :Then Equation (2.3) implies that G is (�;R)-close to F , and we havejE(G(�))� E(��(�))j = j� (E(F (�)) + fn(�))� (E(F (�)) +H(�; �n))j< �for � = �`, as required.Now we provide a method for creating disk images for use as input to Lemma2.9.Lemma 2.10. Given F with �(F (@�)) \ Crit(�) = ;, there exist a constant� > 0 and holomorphic maps �� : �! 
 such that �� varies smoothly with � 2 @�,��(0) = F (�), and for all �; � 2 @�,� (��(�)) > � (��(0)) + �:15



Furthermore, we can assume that the �� satisfy the size condition in Lemma 2.9.Proof. For � 2 @�, de�ne a manifold in which to place an analytic disk imageby S� := he1; e2i \ fz 2 
 : LF (�)(z) = 0gwhere L denotes the Levi polynomial. Note that S� is generically 1-dimensional,so by taking a small perturbation of L if necessary, we can assume S� is indeed 1-dimensional. Also, since there are no critical points near F (@�), we can assume thatthe S� vary smoothly in � { at least near F (@�).Let c = mini=1;2�2@� [L�(F (�); ei)]and note that c > 0 by our choice of e1 and e2.Choose a neighborhood M of � so that the Levi polynomial L has no criticalpoints in M , and a de�ning function s : C ! 
 for S� in M such that s(0) = F (�).Note that for each �, L is holomorphic, so s is holomorphic as well. By our previousdiscussion, we know that since S� is in the Levi support surface for �, we can shrinkM (if necessary) to the point that for any a; b 2 R where F (�) + ae1 + be2 2M ,�(F (�) + ae1 + be2) > �(F (�)) + c2 �jaj2 + jbj2� :Let D � C be the largest disc (say of radius r) centered at the origin whose imageunder the map s is contained in M and satis�es the size condition in Lemma 2.9.De�ne ��(z) = s(rz).Given � 2 @�, we �nd a��; b�� 2 C so that��(�) = s(r�) = � + a��e1 + b��e2:Now let � vary, and de�ne m = min�;�2@� ����a�����2 + ���b�����2� :By compactness, m > 0 and the choice of M ensures that� (��(�)) > mc2 + � (��(0)) :Thus we de�ne � = mc2 . 16



F (�)��(�)Figure 2.2. The analytic disks �� along the boundary F (�)Combining Lemmas 2.9 and 2.10 gives the basic method for pulling the diskboundary when no critical points are involved.Lemma 2.11. Given F as above, � > 0 and 0 < R < 1 such that�(F (@�)) \ Crit(�) = ;;there exists an � > 0 independent of � and R and an analytic map G which is(�;R)-close to F with �(G(�)) > �(F (�)) + �=2for all � 2 @�.Proof. Use Lemma 2.10 to create � and ��. Choose � su�ciently small thatwhenever jz � wj < � for z;w 2 E(
)we have ���� �E�1(z)�� � �E�1(w)���� < �=2:Lemma 2.9 then provides G.Remark 2.12. The size � of the increase in �(@�) obtained by Lemma 2.11depends on two things { both arising in the proof of Lemma 2.10: �rst, the size ofthe Levi form in the e1 and e2 directions a�ects how quickly � increases on the disks��(�); second, the distance of F (@�) from critical points of � determines the radiiof those disks. Our increase � goes as the product of these quantities.We are now ready to address the problem of pulling the boundary of our analyticdisk in a region near a critical point. We begin with a lemma that shows we can getas close to the critical value as necessary.17



Lemma 2.13. Given F , a critical value c of �, � > 0, 0 < R < 1, constantsa < b < c such that r� 6= 0 in 
c n
a, and F such that F (@�) � 
c n
b then for alld < c there exists a G which is (�;R)-close to F such that �(G(@�)) = d.Proof. Take c0 such that d < c0 < c, and in Lemma 2.10 choose the radii of theanalytic discs �� so small that �(��(�)) � c0 for all �; � 2 @�. Use these as inputto Lemma 2.9, along with � so small that �(G(z)) < c+c02 . Repeat this procedureif necessary until �(F (@�)) > d. Finally, use Lemma 2.8 to trim back G so that�(G(@�)) = d.Now we need to show that the analytic disk boundary can be pulled past thecritical value in regions away from a critical point. The idea here is to choose thedisk images �� as normal outside a small neighborhood of the critical point, whilechoosing them to be in�nitesemally small near the critical point. Away from thecritical point, we can increase � an essentially �xed amount (see Remark 2.12), sowe can pull past the critical value. By doing so, we reduce the problem of pullingthe disk boundary beyond a critical value to a local problem of pulling it past thecritical value in a neighborhood of the critical point.Lemma 2.14. Suppose F is as above, and we have a critical point z0 of � withcritical value c, � > 0, 0 < R < 1, and constants a < b < c such that r� 6= 0in 
c n 
a. Assume also that F (@�) � 
c n 
b. Then there exist a G which is(�;R)-close to F and an open arc A �� @� such that G(Ac) �� Nz0 for a coordinateneighborhood Nz0, and such that � (G (A)) > c.Proof. Choose an open neighborhood U �� Nz0 of z0 small enough that F (@�) 6�U , and let � = dist (U; @Nz0). Lete
 = 
c n 
b nNz0 :As in Lemma 2.10, we de�neSp := he1; e2i \ fz 2 
 : Lp(z) = 0g;for all p 2 
c n 
b, and choose analytic disks Dp(�) � Sp. This time, choose thedisks with the additional criterion that if p =2 U , then Dp(�) \ U = ;. For p 2 U ,18



just let Dp(�) � p. We will see that increasing � using these disks will yield thedesired analytic disk G.The set e
 is compact, and bounded away from any critical points, so for all p 2 e
there is a global minimum � for the quantity � (Dp(@�)) � � (p). This � dependson three things: �; the size of L�(e
; ei); and the distance between 
c and the nextcritical point whose critical value is larger than c.By Lemma 2.14, we can assume the map F has the property that� (F (@�)) > c� �=4:For � 2 @�, de�ne �� = DF (�). Apply Lemma 2.9 to the disks �� with the constant� chosen so small that wheneverjz � wj < � for z;w 2 E(
)we have ���� �E�1(z)�� � �E�1(w)���� < �=2:Let G be the resulting map, and de�neA = F�1 �N cz0� \ @�:Then for � 2 A, � (G (�)) > c+ �=4as required.Here we have a technical lemma generalizing the above.Lemma 2.15. Take F with F (@�) \ Crit(�) = ;, constants �; � > 0, 0 < R < 1,and arcs U �� V �� @�:Then there exists � > 0 and G which is (�;R)-close to F such thatjE (G(�)) �E (F (�))j < �for � 2 U , and �(G(�)) > �(F (�)) + �for � 2 V c. � is independent of �, �, and �(z) for z in a small neighborhood of F (U).19



Proof. The proof here is exactly like that of Lemma 2.14. Simply substitute Vfor Nz0.We are �nally ready to create a method for pulling past a critical value in theneighborhood of a critical point. According to the following analysis, Lemma 1.2provides a standard, coordinatised form of � to work with. Clearly we can assumethat we have holomorphic coordinates in a neighborhood of z0 such that z0 = 0.Lemma 2.7 allows us to assume � is 2-convex. Thus we see from Equation (1.2) inthe proof of Lemma 1.2 that there exists a coordinate transformation such that�(z) = (1 + �1)jx1j2 + (1 + �2)jx2j2� (1 � �3)jx3j2 � (1 � �4)jx4j2 +O �jz0j � jzj+ jz1j3 + jz2j3� :Scaling each coordinate by a factor of 1=(1 +�j) and relabelling x3 and x4 as y1 andy2 yields the standard form we require:�(z) = x21 + x22 � c1y21 � c2y22 + o(jz1j2; jz2j2) +O(jz3j; : : : ; jzN j) �O(jzj)for cj = (1 � �j)=(1 + �j).In the proof below, we use the fact that F (@�) has not yet quite reached thecritical point to pull it in a succession of directions leading away from the criticalpoint. These directions are provided by a series of functions �j which are similar to,but not equal to, the original �. Naturally, analyticity of the map G doesn't dependon the function according to which we have \pulled" F , but it is necessary to choosethe �j in such a way that G will indeed pull the boundary of our disk past the criticalvalue c.Lemma 2.16. Suppose z0 is a critical point of � with critical value 0. Assumealso that there is an arc V �� Nz0 such that� (F (@�) n V c) > � > 0where Nz0 denotes a coordinate neighborhood of z0 with coordinate function  Thengiven � > 0 and 0 < R < 1, there exists G which is (�;R)-close to F such that� (G(@�)) > 0. 20



UpF (@�) x1 = x2 = 0
Figure 2.3. The map F (@�) misses the axisProof. Let W � Nz0 such that V ��W , and �nd open sets V0; Ui, and Vi withW �� V0 �� V1 �� U1 �� V2 �� U2 �� : : :and V �� \i2NVi:Choose (�i; Ri) so that P1i=1 �i < � and R < Ri % 1 and assume without loss ofgenerality that �� �. Take holomorphic coordinates zi in Nz0 such thatL z0; @@z1! > L z0; @@z2! > 0:Then according to Lemma 1.2, we can choose coordinates in Nz0 so that z0 = 0 and�(z) = x21 + x22 � c1y21 � c2y22 + f(z) + g(z)for some bounded, continuous f(z) = o(jz1j2; jz2j2) and g(z) = O(jz3j; : : : ; jzN j) �O(jzj).Note that dimR(@�) = 1 so that F (@�) generically misses the axis x1 = x2 = 0.Thus by taking (if necessary) a small perturbation of the map F we can assumethat there exists a constant � > 0 such that x21 + x22 > 2� for all points in F (@�).Assume without loss of generality that 2� � �, and choose constants �i > 0 suchthat P �i < � for a � so small that wheneverjz � wj < � for z;w 2 E(
)we have ����(E�1(z))� �(E�1(w))��� < �4 minz2W (1; jDg(z)j�1):(2.4) 21



We now use a trick to get past the critical value. The preceding lemmas do notdepend on � being an exhaustion function, but rather only on the fact that there aretwo positive directions for the Levi form of �. Consider such a function�1(z) = x21 + x22 � �y21 � �y22:Note that w 2 F (@�)) �1(w) > 0 so that we can combine Lemmas 2.15 and 2.11with our choice of e1 = @@z1 , e2 = @@z2 to obtain a new F1 which is (�1; R1)-close to Fsuch that for each � 2 @�, there exists � 2 @� withjE(F1(�))� E(��(�))j < �1;as well as the properties that� (F1(�))� � (F (�)) > ��1and �1 (F1(�))� �1 (F (�)) > ��1for � 2 F�1(V c1 ) \ @�. Most importantly,�1 (F1(�)) > 2�for � 2 F�11 (U1) \ @�. We have now improved our situation to the point that�2(�) := x21 + x22 � 2�y21 � 2�y22 > 0when � 2 F�1(U1) \ @�.Repeat the process (using Lemmas 2.15 and 2.11) we used to obtain F1 from �1above, this time using the function �2 and the map F1 as initial data. We obtain F2which is (�2; R2)-close to F1 such that for each � 2 @�, there exists � 2 @� withjE(F2(�))� E(��(�))j < �2;as well as the properties that� (F2(�))� � (F1(�)) > ��2and �2 (F2(�))� �2 (F1(�)) > ��2for � 2 F�12 (V c2 ) \ @�. Also, �2 (F2(�)) > 2�22



for � 2 F�1(U2) \ @�. We can repeat the process n times, so long as n� < 1 (thatis, so long as �n is strictly 2-subharmonic).Choose n su�ciently large that 1 > n� > max[c1; c2] to getx21 + x22 � y21 � y22 < �n(z) = x21 + x22 � n�y21 � n�y22 < �(z) � g(z)near z0. We obtain Fn which is (�=2; R)-close to F and has �n(Fn(@�) \ Un) > 2�.Note that since we always chose our disks �� in the e1; e2 directions, the functiong(z) can be seen from equation (2.4) and our choice of the �i to satisfyjg (Fn(�))� g (F (�))j < �:Thus Fn has � (Fn(�))� � (F (�)) > � � � > 0for � 2 F�1(W c) \ @�, and � (Fn(�)) > � (Fn(�))� g(�)> �n (Fn(�))� �> � > 0for � 2 F�1n (Un) \ @�.We now have that �(Fn(�)) > 0 for all � 2 @�nF�1 (W n V ). The set F�1 (W n V )is contained in two arcs which are removed from a neighborhood of the critical point,so we simply use Lemma 2.15 to obtain G from Fn such that G is(�;R)-close to F ,with G(@�) > 0.We are now ready to prove that it is possible to pull the boundary of our analyticdisk completely past a critical point.Lemma 2.17. Suppose z0 is a critical point of � with critical value 0, and forarbitrarily small constants a < b < 0 there is F with F (@�) � 
b n 
a. Then forone such F , and any � > 0 and 0 < R < 1 there exists G (�;R)-close to F such that� (G(@�)) > 0.Proof. Use Lemma 2.14 to create the input for Lemma 2.16. The resulting Gis the desired function.The �nal lemma sets up the framework for the limiting sequence of analytic disksused in the proof of the theorem. 23



Vk Uk
Fk�1(@�) (Fk�1 +H)(@�)

Figure 2.4. The succession of maps increasing � (F (@�))Lemma 2.18. Given N 2 N, � > 0 and 0 < R < 1, and F such that F (�) � 
N ,there exists G which is (�;R)-close to F such that � (G(@�)) > N .Proof. Let (�i; Ri) be chosen so that P1i=1 �i < � and R < Ri ! 1. Assumewithout loss of generality that � (G(@�)) = 0, and let the critical values for � between0 and N be fcigni=1. Use Lemma 2.11 a �nite number, say k1 times to obtain a mapFk1 and a critical point c1 suitable for input to Lemma 2.17. Apply Lemma 2.17 toobtain Fk1+1, and proceed to apply Lemma 2.11 k2 times to obtain Fk2+1; c2 suitablefor input to Lemma 2.17. Continuing the process, we end up with the required mapG = Fn+P ki .Proof of Theorem 2.1 We want to show that it is possible to use the lemmasabove to create a convergent sequence of holomorphic maps from � into 
 whoselimit is proper. Begin by �nding a � > 0 so small that wheneverjz � wj < � for z 2 E(
) and w 2 C nwe have w 2 
�:Without loss of generality, we can assume that � < 1.24



Choose (�i; Ri) so that P �i < �, and Ri % 1. Take a coordinate neighborhood(M; ) of our prescribed point p with  (p) = 0, and put a small linear disk F :�!  (M) in  (M) in such a way that F 0(0) =  �(�). For the succession of i 2 N,use Lemma 2.18 and Lemma 2.8 to construct Fi such that �(Fi(@�)) = i, and Fi is(�i; Ri)-close to Fi�1.We want to prove that the sequence Fi converges uniformly on compact subsetsof �. First, we need to see that the pointwise limit exists for any z 2 �. Let k 2 Nbe large enough that jzj < Rk, and note that by the De�nition 2.6 of (�;R)-closeness,jE (Fi+1 (z))� E (Fi (z))j < �ifor i � k. Hence jE (Fi+` (z))� E (Fi (z))j < i+X̀j=i �j < �:Therefore the sequence E (Fi (z)) is bounded, and hence has a limit z1. By regularityof E, and the fact that E (Fi (z)) 2 E(
) for all i, we see that z1 2 E(
). De�nethe pointwise limit function F of the Fi by F (z) := E�1 (z1).Let K �� � and � > 0. De�ne �j = 1Xi=j �iand note that �j ! 0 as j !1. Since K is relatively compact in �, there exists ak1 2 N such that K � fz : jzj < Rk1g :Choose k2 2 N such that �k1 < �, and de�ne k = min[k1; k2]. Then for all z 2 K and` > k, jE (F` (z))�E (F (z))j � 1Xj=` jE (Fj (z))� E (Fj+1 (z))j< 1Xj=` �j< �` < �k< �:Hence Fi ! F uniformly on compact subsets of �. Since the Fi are holomorphic, sois F . Our only remaining requirement is to show that F is proper.25



Take a sequence fzjg in � with jzjj % 1. Given M 2 N, we want to show thatthere exists k 2 N such that� (F (zj)) > M 8 j > k:For any 0 < R < 1, let AR = fz : R < jzj < 1g :By continuity of FM+2, there exists R < 1 such that� (FM+2 (AR)) > M + 1:Choose k such that zj 2 AR for all j > k. Then by De�nition 2.6,� (Fi+1 (z))� � (Fi (z)) > ��ifor all z 2 �, so that � (F (z))� � (Fi (z)) > � 1Xj=1 �j > �1:We conclude that� (F (zj)) > � (FM+2 (zj))� 1 > (M + 1)� 1 > Mwhenever j > k.To complete the proof, note that any compact subset e
 of 
 is contained in alevel set 
M for some M . The above analysis shows us that there exists an R suchthat AR \ F�1 (
M ) = ;. Hence F�1 (
M) �� � and we see that F�1 �e
� is acompact subset of �. Therefore F is a proper analytic map from the open unit disk� into 
.
26



CHAPTER 3Handles for Strictly Pseudoconvex Domains1. OverviewOur goal is to prove that it is possible to attach a lower-dimensional handle �to a strictly pseudoconvex domain D in such a way that the union X = D [ � isholomorphically convex. In particular, we would like to show that for properly chosenhandles, X has a Stein neighborhood basis. The techniques used in this proof will beelementary: nothing more than a little integration and some symmetry arguments.We begin by �nding an explicit Stein neighborhood basis for the most basicpossible example: the unit ball B (or actually an ellipsoid E) and a at, totallyreal plane in C 2 . Note that B is strictly geometrically convex, a forteriori strictlypseudoconvex. Because the ball and plane have such simple geometry, it is possibleto calculate exact conditions for neighborhoods 
 of X to be pseudoconvex. Oncewe obtain neighborhoods satisfying these conditions, they will provide the neededStein neighborhood basis.After �nding a Stein neighborhood basis in this special case, we use some tricksto extend our results to strictly pseudoconvex domains. In essence, we will reducethe general case to the hyperbolic case, and the hyperbolic case to an adaptation ofthe construction for the ellipsoid.In each of these reductions, as well as the construction of the Stein neighborhoodbasis for the ellipsoid and at plane, the following well-known lemma will be useful:Lemma 1.1. Let �1 and �2 be smooth (strictly) plurisubharmonic functions de-�ned on an open set U � C n , with (d�1 6= d�2 on) K = fz : �1(z) = �2(z)g. Thenthere exists a smooth (strictly) plurisubharmonic function  on U such that�  � max(�1; �2).�  = max(�1; �2) outside a small neighborhood of K.27



�  �max(�1; �2) is arbitrarily small.For our purposes, Lemma 1.1 says that a domain D arising from the intersec-tion of two strictly pseudoconvex domains D1 and D2 is strictly pseudoconvex inthe sense that it can be approximated to arbitrary accuracy by a smooth strictlypseudoconvex domain contained within D. To see this, consider �1; �2 and  to bede�ning functions for the respective domains D1;D2 and D. Note that the lemma isa local result, so that the domain D is strictly pseudoconvex so long as it is locallya transverse intersection of strictly pseudoconvex domains.Lemma 1.1 is a smoothing property of plurisubharmonic functions. For a proofsee [10]. 2. The ellipsoid E and the x1-x2 plane �P2.1. Preliminaries. We begin by de�ning precisely what we mean by an ellip-soid and the at handle to which it will be attached. Let z = (x1+ iy1; x2+ iy2) andde�ne �E = jxj2 + cjyj2 � 1 < 0(2.1)for a constant c, so that our ellipsoid isE = fz : �E(z) < 0g:Our at handle must lie in a particular direction in order to attach properly to theellipsoid. We let �P = fz : y1 = y2 = 0g:so that the domain for which we want to �nd a Stein neighborhood basis isX = E [ �P :Finally, we let the ball B have the de�ning function�B(z) = jzj2 � 1:First we will examine the structure of a (not necessarily Stein) neighborhood basisfor the set X, and then we will try to �nd such a basis that is Stein. Our techniquewill involve �nding a function that satis�es a certain di�erential inequality. For28



purposes of illustration, we will begin with a brief analysis of the case E = B, whichwill point the way to solving the problem for all E.SinceX is cylindrically symmetricwith respect to x1 and x2, and also with respectto y1 and y2, we consider a de�ning function � for a neighborhood basis element 
of the form �(z) = jyj2 � � �jxj2�(2.2)where � 2 C2(R;R), and let 
 = fz : �(z) < 0g. If a neighborhood basis element
 is de�ned by such a �, then it will have the same cylindrical symmetry as X.Remark 2.1. If �(t) = (1 � t) =c then � = �E, so that 
 is just the ellipsoid.If instead �(t) = Const., then 
 is a neighborhood of �P . We want to choose �to interpolate between these possibilities while keeping the Levi form of � strictlypositive in complex tangent directions. By doing so, we ensure that 
 remains strictlypseudoconvex.We can compute the Levi form nPj;k=1 @2�@zj@zk�j�k of � and the complex tangents� = � @�@z2 ;� @�@z1� to the boundary @
 = fz : �(z) = 0g explicitly in terms ofderivatives of �. Hence it is possible to write down the Levi condition for the set 
to be strictly pseudoconvex explicitly in terms of derivatives of �. See Appendix Afor details of these computations. We �nd that the Levi form for any cylindricallysymmetric 
 with a de�ning function as in Equation (2.2) isL�(z; �) = 12 �jyj2 + jxj2 (�0)2� (1� �0)� (x1y2 � x2y1)2�00:(2.3)We can bound the last term in Equation (2.3) from below to obtain a more symmetricestimate L�(z; �) > 12 �jyj2 + jxj2 (�0)2� (1 � �0)� jxj2jyj2�00:Using the fact that the Levi condition needs to hold only for z on the boundary@
, where �(z) = 0 and hence jyj2 = �, we substitute � for jyj2. We have reducedthe problem of �nding a neighborhood basis element that is Stein to the problem oflocating a � satisfying the following �ve conditions:(i): �(t) � (1� t)=c for t < 1, �(t) > 0 for t 2 [1;1).(ii): �0(t) = �1=c for t = 1. 29



(iii): �00(t) � 0 for all t.(iv): �(t) � �1 for some constant �1 and all t > 1 + a for a positive a.(v): L� = ��+ jxj2 (�0)2� (1� �0)� 2jxj2��00 > 0.2.2. A First Try. Conditions (i) and (ii) arise from Remark 2.1. They implythat we are expecting �0 to interpolate between �0 = �1=c and �0 = 0. It is thereforereasonable to assume (initially, at least) that �0 � 0 in our region of interest. Also,the di�erential inequality (v) for L� can be writtenL� = jxj2 �(�0)2 � 2��00�+ � (1� �0)� �0 �jxj2 (�0)2� > 0:(2.4)Under the assumption �0 � 0, the second two terms in Equation (2.4) are� (1 � �0) > 0and ��0 �jxj2 (�0)2� � 0since � is positive. We therefore need only to make the �rst term jxj2 �(�0)2 � 2��00�positive, so we consider �rst the di�erential equation(�0)2 � 2��00 = 0(2.5)or �00 = (�0)22� :(2.6)Equation (2.6) can be solved by logarithmic integration to �nd that�(t) = (C1 � C2t)2for some arbitrary constants C1 and C2. For simplicity, we let c = 1 and take initialconditions �(1) = ��0(1) = �1(2.7)corresponding to the unit ball. We obtain the parabolic solution�0(t) = 14�(1 + 2�� t)2:(2.8)This �0 clearly satis�es Condition (v) on [1; 1 + 2�) since �00 < 0 in this region.However, at t = jxj2 = 1 + 2�, we have �0 = �00 = 0 so that �0 fails Condition (i)30



above. That is, since �0 is not strictly positive it fails to provide an open neighbor-hood of the plane.The obvious remedy to this problem is to \lift" �0 o� the plane by consideringthe function ��(t) = �(t) + � for some small � > 0. Note that �0� = �00 and �00� = �000.We must exercise caution, however, because this \lift" alters the Levi form of �.Computing the new Levi form, we run into a new di�culty: �00 � 1=2�, so whent = 1 + 2�, we see that Condition (v) hasL�� = � � 2(1 + 2�)(�)�000< 0:We can analyze this problem in somewhat greater generality. Whenever �00 = 0 wecan write Equation (2.4) asL� = jxj2 (�2��00) + � = � �1� jxj2�00�> 0:From this, it is clear that we need to �nd a � such that �00 is smaller than 1 when�0 = 0. No mere parabolic solution will su�ce, but we can consider solutions ofslightly higher powers than 2. As we will see, they provide the � we need.2.3. The Solution. Begin by writing the di�erential inequality in Condition (v)for L� as �+ jxj2 �(�0)2 � 2��00�� � (�0)� �0 �jxj2 (�0)2� > 0:If we consider the region where t = jxj2 < 2, then L� is positive if �0 � 0 and thesum of the �rst two terms is positive:�+ jxj2 �(�0)2 � 2��00� > 0() �jxj2 + (�0)2 � 2��00 > �2 + (�0)2 � 2��00 > 0() �2 + (�0)2 > 2��00:That is, we want �00 < 14 + (�0)22�= 18 + 18 + (�0)22� ;31



or �00 < 18 + (�0)2(2� �)�| {z }A + 18 � �(�0)22(2 � �)�| {z }Bfor any small � we choose. Note that we have split the right hand side into two piecesA = 18 + (�0)2(2� �)�and B = 18 � �(�0)22(2 � �)�:We want �00 < A+B or, equivalently, A� �00 +B > 0.Let �� solve �00 = (�0)2(2 � �)�(2.9)so that �00 = A � 18 < A. We use initial conditions from Conditions (i) and (ii)corresponding to the ellipsoid to solve this di�erential equation�(1) = ��0(1) = �1=cand we integrate to �nd the exact form of ��:��(t) = jC1 �C2tj 2��1��(2.10)with C1 = � 1��2�� + 1c  1 � �2 � �! � �12��C2 = 1c  1 � �2 � �! � �12�� :We then obtain �0� = �2� �1� �C2jC1 � C2tj 11��and �00� = 2 � �1 � � 11� �C22 jC1 � C2tj �1�� :Of special interest to us is the fact that when � > 0, the solution �� is a powerof order � 2 + � 6= 2, so that the second derivative �00� is no longer constant. As amatter of fact, �00� is a power of order � �, so the size of �00� is small when �� and32



the �rst derivative �0� are small. This satis�es the requirement for a small �00� notedabove. Let us make this analysis precise:De�ne t0 = C1=C2 � 1 + 2c� to be the minimum for ��, and note that��(t0) = �0�(t0) = �00�(t0) = 0:�00� increases with distance from t0; on the interval [1; t0], we have an upper bound�00� � 2 � �(1 � �)2C22 jC1 � C2j �1��= 2 � �(1 � �)2C22� �2��= 1c2 (2 � �) 1� :Call this maximum M2 = 1c2 (2� �) 1� :Then if we choose � < �c22 + �c2=2(2.11)we will have that 18 � �2�00� � 18 � �2M2 > 0which means that B = 18 � �2 (�0�)2(2� �)��= 18 � �2�00�> 0 for all t 2 [1; t0](2.12)where we have used the fact that �� satis�es the di�erential equation (2.9). Thusthe quantity B is positive, and we �nd that�00 = A� 18 < A < A+B;or equivalently A� �00 +B > 0:Condition (v) is therefore true when t 2 [1; t0), so we can conclude that the set 
de�ned by 
 = fz : jyj2 � � �jxj2� < 0g33



is strictly pseudoconvex in the region 1 � jxj2 < t0.Notice, however, that �� shares the drawback of �0 (as in Equation (2.8)) in thatit is not strictly positive { in particular, �(t0) = 0. In order to satisfy Condition (i)and get an open neighborhood of the plane, we want to \lift" �� as we tried todo with �0. That is, we want to choose � = �� + � for some � so small that ourdi�erential quantity A� �00 +B will stay positive. The reason that we expect to beable to do so is that ��, unlike �0, has a second derivative which is zero when the�rst derivative is zero.Note that for this new �, �0 = �0� and �00 = �00� so1=(�� + �) < 1=��=) 18 � �2 (�0)2(2� �)� = 18 � �2 (�0�)2(2� �)(�� + �)> 18 � �2 (�0�)2(2� �)��> 0Therefore our estimate B > 0 in Equation (2.12) still holds for our new �. We needonly look for a � so small that A satis�es�00� < A= 18 + (�0)2(2 � �)(�)= 18 + (�0�)2(2 � �)(�� + �)= 18 + (�0�)2(2� �)��| {z }�00� (by de�nition) 1 � ��� + �!= 18 + �00� � �00�  ��� + �! :That is, we need 0 < 18 � �00� ��� + � :Now �00� = Const � jt0 � tj�+o(�)34



so it increases with distance from t0. As a matter of fact, we can compute that�00� < 1=16 whenever t is of distance less thans = �2� �16 �1���  2� �1� �! c 2��� � 1�(2.13)from t0. We also have � = Const � jt0 � tj2+�+o(�) + �(2.14)so that on the interval [1; t0 � s], �� takes on its minimumM0 := C 2��1��2 s 2��1��at the endpoint t = t0 � s.Choose � < M016M2 � 1(2.15)so that �M0 + � < 116M2 :Then on the interval [1; t0 � s],18 � �00� ��� + � � 18 �M2 ��� + �> 18 �M2 �M0 + �> 18 � 116> 0and on the interval [t0 � s; t0],18 � �00� ��� + � � 18 � 116 ��� + �� 18 � 116 (1)> 0:Hence, by our choices of � and �, we obtain A � �00 + B > 0 when t 2 [1; t0].Therefore the Levi form of � = jyj2 � (��(jxj2) + �) is strictly positive for jxj2 inthe closed interval [1; t0]. We also know that the function � = �� will give an openneighborhood e
2 of the ellipsoid and plane.35



jxj2jyj2
E jyj2 = �(jxj2)

t0 t0 + � e
3Figure 3.1. The neighborhood 
 of B and �PBy compactness of the interval [1; t0], there exists some interval [1; t0 + �] for a� > 0 on which the Levi form of � remains strictly positive. Choose a�1 2 (�(t0); �(t0 + �)):Equation (2.14) implies that �1 > �. Geometrically, �1 is the height of � in aregion past the cylinder jxj2 = t0 where the Levi form of � is still remaining strictlypositive (see Figure 3.1). We will use this �1 as a thickness for a neighborhood e
3 ofthe plane �P , and this choice will allow us to use Lemma 1.1 to link e
3 to e
2.Remark 2.2. One can, of course, explicitly compute �. If � and � are chosento be, say, half the size of their upper bounds given above in Equations (2.11) and(2.15), then it is elementary to compute that � = O(�2).We are now ready to use Lemma 1.1 to complete our construction. We combinethe neighborhood e
2 above with neighborhoods e
1 and e
3 of the ellipsoid and theplane respectively to provide a Stein neighborhood basis element 
.When we take the domaine
1 = E1+2� = fz : jxj2 + cjyj2 < 1 + 2�g36



and the domain e
2 de�ned as above by �, they intersect on four polycircles onE1+2�, speci�ed by jxj2 = a1, jyj2 = 1� a1 and jxj2 = a2 > a1, jyj2 = 1� a2 for somea1; a2 2 R+.Similarly, the neighborhood of �P given by e
3 = fz : jyj2 � �1 < 0g intersectse
2 in four more polycircles, speci�ed by jxj2 = a3, jyj2 = �1 and jxj2 = a4 > a3,jyj2 = �1 where nt : t 2 ��1� (�1 � �)o = fa3; a4g :De�ne a neighborhood e
 of X bye
 = 
1 [ 
2 [ 
3where 
1 = fz : jxj2 � a1 and z 2 e
1 = E1+2�g
2 = fz : a1 � jxj2 � a4 and z 2 
g
3 = fz : a4 � jxj2 and jyj2 < �1g:That is, if we let ~�(z) = 8>><>>:cjyj2 + jxj2 � (1 + 2�) if jxj2 � a1jyj2 � �� (jxj2)� � if a1 � jxj2 � a4jyj2 � �1 if a4 � jxj2(2.16)then ~� is a de�ning function for e
. We can use Lemma 1.1 on ~� to create a newdomain 
 which is a smooth neighborhood of the ellipsoid E and the plane �P andwhich is strictly pseudoconvex everywhere along its boundary. The distance from @
to E [ �P depends on �, so 
 forms an element in the Stein neighborhood basis weseek:Theorem 2.3. There exists a collection of smoothly bounded, strictly pseudo-convex sets 
1 � 
2 � � � � � 
j � � � � such thatE [ �P = \j2N
j :2.4. Extensions. The �nal step above depended only on our ability to ensurethat the ballB1+2� and the neighborhood e
3 of the plane intersected e
2 transversally.Thus, we have a corollary to the construction above:37



Corollary 2.4. If � is a smooth totally real hyperplane in C 2 intersecting Eon the circle jxj2 = 1 such that for points z 2 � near this circle we havejyj2 � elog �=� where � = c220 �jxj2 � 1�then there exists a smooth Stein neighborhood basis for the set X = E [ �.Proof. This follows directly from the formula for � in Equation (2.15) and theformula for s in Equation (2.13). Note that these formulas make it immediately clearthat � � �1=�.Similarly, it is possible to begin with a small perturbation of the ellipsoid E andstill �nd a Stein neigborhood basis for X.We now consider the problem of extending our results to higher dimensions.Definition 2.5. A complex k-plane L in C n is a complex a�ne image of C k .That is, there exists a linear map f : C k ! L � C n such thatf (z1; : : : ; zk) = p + kXj=1 ajzjfor some constants aj and p in C n .The following theorem is part of the general folklore:Theorem 2.6. A smoothly bounded domain 
 �� C n with de�ning function� is strictly pseudoconvex if and only if for every boundary point p 2 @
 and everycomplex 2-plane L through p such that d� 2 T (L) = TC (L), the domain 
\L is strictlypseudoconvex when considered as a subset of C 2 , i.e. if and only if f�1 (
 \ L) isstrictly pseudoconvex in C 2 .Proof. Case 1. ()) Since 
 is already pseudoconvex, with a complex tan-gent space to its boundary @
 of n� 1 dimensions, L can contain only one complextangent vector � to @
. Assume without loss of generality that � = (1; 0; : : : ; 0).Then the Levi form L�(p; �) = nXj;k=1 @2�@zj@zk�j�k= @2�@z1@z1�1�1> 0(2.17) 38



by virtue of the strict plurisubharmonicity of �.Case 2. (() Let � be a complex tangent vector to @
 at p, and let � = d�jp.Let L be the complex 2-plane de�ned byf(z1; z2) = p+ �z1 + �z2:and de�ne ~� to be the restriction of � to L. Using a translation and a complexrotation, we can arrange L and 
 so that � = (1; 0; : : : ) and � = (0; 1; 0; : : : ). Thenby assumption L~�(p; �) > 0, and @2�@z1@z1 = @2~�@z1@z1 :Now L�(p; �) = @2�@z1@z1�1�1= @2~�@z1@z1�1�1> 0:Thus L�(p; �) > 0 for all complex tangents � to @
, and 
 is strictly pseudoconvex.Theorem 2.7. If 
 � C n is a set with a C2 de�ning function �(z) = jyj2 �� (jxj2) with the property that the sets
jk := fz 2 
 : zl = 0 if l 6= j; kgare strictly pseudoconvex when considered as subsets of C 2 , then 
 is strictly pseu-doconvex.Remark 2.8. This theorem is not an immediate consequence of Theorem 2.6,because the sets 
jk do not constitute all possible complex 2-planes through theboundary @
 (and containing its normal vector). However, Theorem 2.6 does pointthe way to a proof:Proof. For a point p = (s1 + it1; : : : ; sn + itn) 2 @
, let M 2 O[n;R] be a realorthogonal n� n rotation matrix such thatM � s = (x; 0; : : : ; 0)39



for some x 2 R+. Since O[n;R] has n � 1 degrees of freedom, we can also specifythat M � t = (y1; y2; 0; : : : ; 0)for some y1; y2 2 R. BecauseM is a rotation matrix, it is norm-preserving, so x = jsjand y21 + y22 = jtj2.Now consider M as a rotation matrix in SU [n; C ] that happens to have all realentries. M � z is a complex rotation of coordinates, so M represents a holomorphic(actually a complex linear) change of coordinates which we will denote by h(z). NoteM � (s+ it) =M � s+ iM � t;so h preserves both jxj and jyj. Thus by the cylindrical symmetry of 
, we �nd thath(p) 2 
 , p 2 
, i.e. 
 is invariant under h. If � is a complex tangent vector to@
, then so is h(�).The above argument allows us to reduce the question of pseudoconvexity at anyboundary point of 
 to that of pseudoconvexity at a point of the typep = (x+ iy1; iy2; 0; : : : ; 0):Thus we need:Lemma 2.9. Given a domain 
 and a de�ning function � as in Theorem 2.7, aswell as a point p 2 
 of the form p = (x1 + iy1; iy2; 0; : : : ; 0) and a complex tangentvector � to @
 at p, we can conclude that L (p; �) > 0.Proof. Computing the partial derivatives of � at p, we �nd that@�@zj �����p = �iyj � xj�0 = 0(2.18)when j > 2 and @2�@zj@zk �����p = 12�jk � xjxk�00 = 12�jk(2.19)when j > 1 or k > 1. Equation (2.18) implies that� = (�1; �2; : : : ; �n)where (�1; �2) is a complex tangent vector to 
12, and �j is arbitrary for j > 2.40



From Equation (2.19) we obtainL (p; �) = nXj;k=1 @2�@zj@zk �j�k= 2Xj;k=1 @2�@zj@zk �j�k + nXj=3 @2�@zj@zj j�jj2= L� (p; (�1; �2)) + nXj=3 12 j�jj2where L� denotes the Levi form taken in the complex 2-plane slice corresponding tothe z1 and zj directions. By assumption this term involving L� is positive, so weobtain L (p; �) > 0.According to Lemma 2.9, we see that L� (h(p); �) > 0 for any complex tangentvector � to @
 at h(p). Since @
 is invariant under h, given any complex tangentvector � to @
 at p, we have that � = h(�) is complex tangent at h(p). Section 3:1of [11] shows that plurisubharmonicity is invariant under holomorphic maps, soL� (h(p); �) = L� (h(p); h(�)) > 0=) L� (p; �) > 0for all p and �.At last we are able to extend our results to higher dimensions:Corollary 2.10. For any n � 2, there exists a Stein neighborhood basis forthe set E [ �P � C n whereE := nz 2 C n : jxj2 + cjyj2 � 1o ;and �P := nz 2 C n : jyj2 = 0owith z = (x1 + iy1; : : : ; xn + iyn) and jyj2 = y21 + � � � + y2n.Proof. Given � > 0, let �(z) be de�ned as in equation (2.16) with jxj2 and jyj2de�ned now in C n . Then the domain 
 de�ned by � �ts the hypotheses of Theorem2.7, and hence is strictly pseudoconvex. According to Lemma 1.1, 
 can be smoothedto a smooth Stein neighborhood basis element for E [ �P .41



3. Hyperbolic domains of the form jxj2 � cjyj2 � 1We are ready to extend our results to the case of domains which are not ellipti-cal. For now, however, we retain the cylindrical symmetry and consider hyperbolicdomains 
 with de�ning functions � of the form �(z) = jxj2 � cjyj2 � 1. Since weare interested in the strictly pseudoconvex case, we restrict our attention to the casec < 1.
jxjy





1
(
0 in dotted line)Ba

Figure 3.2. The construction of a neighborhood for 
Conceptually, our method is relatively simple: we bound 
 behind two hyperbolicdomains 
1 of slightly higher curvature { one translated up a bit, and the othertranslated down. Locally, where these new domains meet, their intersection formsa strictly convex domain. This domain can therefore be locally bounded by a ballBa, for which we already know how to construct a Stein neighborhood basis element.See Figure 3.2 for a drawing of this construction.42



We begin by specifying the translated hyperbolic domain 
1 with more precision.As we can see from the drawing, we want 
1 to just about intersect 
 tangentially,so that it will intersect a neighborhood 
0 of 
 transverally. We therefore considera de�ning function for 
1 of the form�1 (z) = jxj2 � d (jyj � �)2 � (1 + �) :The constant d introduces the higher curvature, while the constants � and � providethe necessary translation. Note that the Levi form of jyj satis�esLjyj2(z; �) = nXj;k=1 14jyj  �jk � yjjyj ykjyj�j�k!= j�j24jyj � 14jyj3 jy � �j2� j�j24jyj � 14jyj3 jyj2j�j2= 0so that L�1(z; �) � 1� d2 j�j2 > 0and therefore 
1 is strictly pseudoconvex so long as d < 1. This leads us to choosed = c+ 12(3.1) � < c3 (1� c)32(3.2)and � = vuut� (1 � c)c (1 + c) :(3.3)That is, d is halfway between the constant c and 1, while � is an arbitrarily smallconstant bounded above by a constant depending on c. We compute� (z)� �1 (z) = (d� c) jyj2 � 2�djyj+ �d�2 + ��(3.4) = (d� c)�jyj � �1 + c1� c�2(3.5) � 0:(3.6) 43



It is now clear that the constant � was chosen in such a way that @
1 intersects @
tangentially. We compute to �nd out exactly where @
1 intersects @
:�(z) = �1(z) = 0(3.7) =) jyj2 = ��1 + c1� c�2 and jxj2 = 1 + cjyj2=) jyj2 = �(1 + c)c(1� c) and jxj2 = 1 + �1 + c1� c:(3.8)Since we actually want 
1 to be an open neighborhood of 
, we make one �naladjustment; we replace � by a slighty smaller � and rede�ne �1 and 
1 accordingly.Then 
1 will be an open neighborhood of 
 and will tranversally intersect a levelneighborhood 
0 of 
 de�ned by
0 = fz : �(z) < gfor some constant  > 0.Now we are ready to show that it is possible to cut 
1 o� with a ball (see Figure3.2 again). If we consider the region where jyj is so small that jyj � �d, then we seethat �1(z) = jxj2 � (1 + � + �2d) + 2�djyj+O(jyj2):Since jxj � 1, this is approximately linear in jyj. Choose a small �� �d, and leta = 1 + � + �2d� �with Ba = nz : jzj2 < ao :and �a(z) = jxj2 + jyj2 � a:Then for jyj < �, we see that�1(z)� �a(z) = 2�djyj � �jyj2 + ��+O(jyj2)= 2�djyj � �+O(jyj2)< jyj � �< 0: 44



At the same time, since �1(z) � jxj2 + jyj2 � (1 + � + �2d):for small jyj, we see that the intersection of Ba and 
1 must be transverse.We have now constructed a neighborhood for 
 which is strictly pseudoconvex,and which looks like the ball Ba for small jyj. From Corollary 2.10 in Section 2, weknow that we can construct a cylindrically symmetric Stein neighborhood basis forthe set Ba [ �P . Choose a neighborhood basis element 
2 from this Stein neigh-borhood basis which is so close to the set Ba [ �P that it, too, has a transverseintersection with 
1. Let �2(z) be the de�ning function for 
2.Now we want to see that by taking appropriate local intersections of 
1, 
2 and
3, we can construct a Stein neighborhood basis element for 
 [ �P . We do so bycreating an appropriate de�ning function.Since both 
1 and 
2 are cylindrically symmetric, there exist constants a3; b3 > 0such that @
1 \ @
2 = nz : jxj2 = a3; jyj2 = b3o :Similarly, Equation (3.8) implies that there exist more constantsa1 > 1 + �1 + c1� c > a2 > 0and b1 > �(1 + c)c(1� c) > b2 > 0such that@
0 \ @
1 = nz : jxj2 = a1; jyj2 = b1o [ nz : jxj2 = a2; jyj2 = b2o :Furthermore, our choice of � ensures that b2 > b3. We therefore de�ne~�(z) = 8>><>>:�2(z) if jyj2 � b3�1(z) if b3 � jyj2 � b1�(z)�  if b1 � jyj2Finally, we use Lemma 1.1 to smooth ~�. We obtain a smoothly bounded strictlypseudoconvex neighborhood basis element whose distance from 
 [ �P decreaseswith the arbitrarily small constant � chosen in Equation (3.2). We have thereforeproven: 45



Theorem 3.1. If 
 is a hyperbolic domain with a de�ning function of the form�(z) = jxj2 � cjyj2 � 1for some 0 � c < 1, then there exists a Stein neighborhood basis for the set 
 [ �PTo state things a little more generally, we combine Theorem 3.1 with Corollary2.10 to obtainCorollary 3.2. Given any cylindrically symmetrical set 
 with a de�ningfunction of the form � (z) = jxj2 � cjyj2 � 1for some c < 1, there exists a Stein neighborhood basis for the set 
 [ �P .4. The general hyperbolic caseDefinition 4.1. Let D � C n be a strictly pseudoconvex domain with a realanalytic de�ning function �(z). Let D� := fz 2 C n : �(z) < �g. A totally realhypersurface �, of real dimension n, is a handle for D if there exists an �0 > 0 suchthat for all � 2 [0; �0), S� := � \ @D� is isomorphic to the n-sphere Sn, and if forpoints P along S�, d� 2 T (�) and T (�)=d� � TC (@D�).We will use our results from the previous sections to construct a Stein neighbor-hood basis for the set D [ �, when � is a at plane in C n and @D \ � is a circle.First of all, note that there exists a complex linear change of coordinates taking �to the x1-: : : -xn plane �P . We can therefore assume without loss of generality that� = �P and that @D \ � is the unit n-sphere in �P .De�nition 4.1 and the atness of our handle create certain restrictions on theform � may take. De�ne x0 = qjx1j2 + � � �+ jxnj2and y0 = qjy1j2 + � � �+ jynj2:A priori, we know that the sphere S0 is in @D, so near S0 we can write�(z) = jx0j2 � 1 + nXj=1 yjgj(z) + nXj�k=1 yjykgjk(z) + o �jy0j2; jx0j2 � 1�46



where the functions gj and gjk are real analytic. However, the condition that d� 2T (�) along S� requires that the second term satisfyd0@ nXj=1 yjgj(z)1A 2 T (�)which is possible only if gj(z) = 0 for all z. Hence�(z) = jx0j2 � 1 + nXj;k=1 yjykgjk(z) + o �jy0j2; jx0j2 � 1� :(4.1)From the fact that the Levi form of � is positive, we can glean information aboutthe size of the gjk. Namely on S0,L(�; �) = 12 j�j2 + 12 nXj�k=1 gjk(z)�j�k > 0:Hence if we substitute � = (y1; : : : ; yn), we �nd thatnXj�k=1 gjk(z)yjyk < jy0j2:(4.2)Since (4.2) holds on the entirety of the compact set S0, there exists a number c < 1such that nXj�k=1 gjk(z)yjyk < cjy0j2for all z 2 S0. Hence in a neighborhood of S0,�(z) < �1 (z) := jx0j2 � cjy0j2 � 1:(4.3)It is now easy to see how we must approach the proof of:Theorem 4.2. Let D � C n be a strictly pseudoconvex domain with real analyticboundary @D, and let � be a at (that is, planar) handle for D. Then there exists aStein neighborhood basis for the set D [ �.Proof. As before, we will use Lemma 1.1 to de�ne an arbitrarily small basiselement in such a neighborhood basis.Assume without loss of generality that we have a de�ning function � for D ofthe form (4.1), and let �1 be as in equation (4.3). A level set D� for a very small �will intersect the set D1 de�ned by �1 transversally. Hence we use these two sets toconstruct a Stein neighborhood basis element for D.47



5. The general strictly pseudoconvex caseWe are �nally ready to state and prove the most general case of our results onhandles.Theorem 5.1. Let D � C n be a strictly pseudoconvex domain with boundary@D, and let � be a real analytic handle for D. Then there exists a Stein neighborhoodbasis for the set D [ �.Proof. Taking � from De�nition 4.1 (the de�nition of a handle), we de�ne thecompact set K = � \D� nD:Let a real analytic function f : K ! C n take K to the totally real x1-: : : -xn plane,in such a way that f(@D \K) = nz : jxj2 = 1oand f(K n @D) � nz : jxj2 > 1o :Then since f has a holomorphic extension locally for each z0 2 K, there exists aholomorphic extension F of f in a neighborhood U of K (see, for example, thepartion of unity argument in Chapter 17 of [16]).Note that the proof of Theorem 4.2 simply uses Theorem 3.1 locally in a neigh-borhood of the plane �P . We can therefore �nd a local Stein neighborhood basis inF (U), so the inverse image will be a local Stein neighborhood basis in U . Outside ofU , we can intersect with level sets D� and a Stein neighborhood basis of the entirehandle �, to obtain a global Stein neighborhood basis for D [ �.6. Handles of lower dimensionDefinition 6.1. LetD � C n be a strictly pseudoconvex set with a real analyticde�ning function �(z). Let D� := fz 2 C n : �(z) < �g. A totally real hypersurface� is a handle of dimension ` for D if there exists an �0 > 0 such that for all � 2 [0; �0),S� := �\@D� is isomorphic to the `-sphere S` for some ` � n, and for points P alongS�, d� 2 T (�) and T (�)=d� � TC (@D�). 48



The main result of this section is that Theorem 5.1 still holds in the case that thehandle � is lower dimension than the maximal n. In order to prove this, we need toverify that the results of Sections 2 through 3 are true for lower-dimensional handles.Lemma 6.2. If
 := nz 2 C n : jx�j2 + jx0j2 + cjyj2 � 1 < 0ofor some c > 0 and �P := nz 2 C n : jx0j2 + jyj2 = 0owhere jx�j2 := x21 + � � �+ x2̀jx0j2 := x2̀+1 + � � �+ x2nthen there exists a Stein neighborhood basis for the set 
 [ �PProof. For this proof, we will need to know that ou de�ning function is not justplurisubharmonic in complex tangent directions, but rather plurisubharmonic in alldirections. Take the de�ning function �(z) for an element of our Stein neighborhoodbasis for the ball and the n-dimensional totally real plane, where in the appropriateregion we have that �(z) = jyj2 � �� �jxj2� :Then for some su�ciently large constant A, we have that �+A�2 is strictly plurisub-harmonic in a neighborhood of the boundary. There exists a new function~� : R! Rsuch that �(z) +A�(z)2 = jyj2 � ~� �jxj2� :Replace � by � +A�2, and �� by ~�.Given a small � > 0, we follow the form of equation (2.16) to de�ne a cylindricallysymmetrical neighborhood of 
 [ �P :�(z) = 8>><>>:jyj2 + jxj2 � (1 + 2�) if jx�j2 � a1jx0j2 + jyj2 � �� (jx�j2) + � if a1 � jx�j2 � a4jx0j2 + jyj2 � �1 if a4 � jx�j2(6.1)with the same constants �; � and aj as in equation (2.16). Note thatL� (z; �) = 8<:1 if jx�j2 < a112 + 12 (j�n�`j2 + � � �+ j�nj2) if a4 < jx�j249



so we only need to verify that the set fz : �(z) < 0g is strictly pseudoconvex inthe region a1 < jx�j2 < a4. Writing jyj2 = jy�j2 + jy0j2, we see that when ` < n, �becomes �(z) = jx0j2 + jy0j2 + jy�j2 � �� �jx�j2�| {z }��(z) :so that for a vector � = �� + �0, the Levi form isL� (z; �) = j�0j2 + L�� (z; ��)each term of which is larger than 0 by assumption.Lemma 6.3. If
 := nz 2 C n : jx�j2 + jx0j2 � cjyj2 � 1 < 0ofor some 0 � c < 1 and �P := nz 2 C n : jx0j2 + jyj2 = 0owhere jx�j2 := x21 + � � � + x2̀and jx0j2 := x2̀+1 + � � � + x2nthen there exists a Stein neighborhood basis for the set 
 [ �PProof. The proof of this lemma is a sraightforward adaptation of the proof ofTheorem 3.1. The only di�erence is that the set 
2 is now taken to be a Steinneighborhood basis element from Lemma 6.2.Theorem 6.4. Let 
 � C n be a pseudoconvex domain with real analytic bound-ary @
, and let � be a handle of dimension ` for 
. Then there exists a Steinneighborhood basis for the set 
 [ �.Proof. The proof of this theorem also is a sraightforward adaptation. The proofof Theorem 5.1 may be taken with the substitution of using Lemma 6.3 in place ofTheorem 3.1. 50



APPENDIX ADetailed Levi Form CalculationsWe want to obtain the Levi form of a function � : C 2 ! C 2 of the form � (z) =(jyj2 � � (jxj2)) in terms of derivatives of �. To do so, we compute @2�@zj@zk in terms ofderivatives of �. Since jxj2 = x21 + x22 and jyj2 = y21 + y22, the chain rule yields@�@z1 = 12  @@x1 � i @@y1!�jyj2 � � �jxj2�� = �x1�0 �jxj2�� iy1so that @2�@z1@z1 = 12  @@x1 + i @@y1!��x1�0 �jxj2�� iy1� = 12 � �02 � x21�00and @2�@z1@z2 = 12  @@x2 + i @@y2! ��x1�0 �jxj2�� iy1� = �x1x2�00:Similarly, we obtain @2�@z2@z1 = �x2x1�00@2�@z2@z2 = 12 � �02 � x22�00so that the Levi form for � at any complex tangent vector � to @
 isL(�; �) = 12 j�j2 � " �02 + x21�00!�1�1 + x1x2�00�1�2+x2x1�00�2�1 +  �02 + x22�00!�2�2#Now a complex tangent vector � is de�ned by P @�@zi�i = 0, so in our case wherethe dimension is 2, we may take� =  @�@z2 ;� @�@z1!= (�iy2 � x2�0; iy1 + x1�0)51



so thatL(�; �) = 12 �y21 + y22 + (x21 + x22) (�0)2��  �02 + x21�00!�y22 + x22 (�0)2�� x1x2�00 ��y1y2 � x1x2 (�0)2 � i(x1y2 � x2y1)�0�� x1x2�00 ��y1y2 � x1x2 (�0)2 + i(x1y2 � x2y1)�0��  �02 + x22�00!�y21 + x21 (�0)2�= 12 �jyj2 + jxj2 (�0)2�� jyj2�02 � jxj2 (�0)32 � �x21y22 + x22y21��00� 2x21x22 (�0)2 �00 + 2x1x2y1y2�00+ 2x21x22 (�0)2 �00= 12 �jyj2 + jxj2 (�0)2�� 12�0 �jyj2 + jxj2 (�0)2�� (x1y2 � x2y1)2�00= 12 �jyj2 + jxj2 (�0)2� (1 � �0)� (x1y2 � x2y1)2�00:

52



Bibliography[1] M. Artin, Algebra, Prentice-Hall, Englewood Cli�s, New Jersey (1991).[2] J. Conway, Functions of One Complex Variable, Springer-Verlag, New York (1978).[3] Y. Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Int. Jour. ofMath. 1 (1990), 29{46.[4] J.E. Forn�ssand E. Stout, Spreading polydiscs on complex manifolds, Amer. J. Math. 99(1977) no. 5, 933{960[5] J.E. Forn�ss and B. Stens�nes, Lectures on Counterexamples in Several Complex Variables,Princeton Univ. Press (1987).[6] F. Forstneri�c, Proper Holomorphic Mappings: a Survey, Several Complex Variables, Stock-holm, (1987/1988), 297{363.[7] F. Forstneri�c and J. Globevnik, Discs in pseudoconvex domains, Comment. Math. Helveteci67 (1992), 129{145.[8] J. Globevnik, Relative embeddings of discs into convex domains, Invent. Math. 98 (1989),331{350.[9] G. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds, Birkh�auser, Boston(1984).[10] L. Hormander, Introduction to Complex Analysis in Several Variables, North-Holland, NewYork (1990).[11] S. Kranz, Function Theory of Several Complex Variables, Wiley-Interscience, New York(1982), 13{148.[12] H. Lawson and M. Michelson Embedding and Surrounding With Positive Mean Curvature,Invent. Math. 77 (1984), 399{419.[13] W. Rudin, Function Theory in the Unit Ball of Cn , Springer-Verlag, New York (1980).[14] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York (1987), 196{402.[15] B. Stens�nes Discs in Stein manifolds, Some J. Math. 11 (1911), 111{222.[16] J. Wermer, Banach Algebras and Several Complex Variables, Springer-Verlag, New York(1976).
53


