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CHAPTER 1

Introduction and background

1. Philosophy

Given an n-dimensional manifold X, there are several ways to relate the structure
of X to manifolds W™ of lower dimension m. For instance, one can consider the m-
dimensional submanifolds W™ of X, for example, and ask in which ways the topology
and structure of W™ are inherited from that of X. Alternatively, one can change the
topology and structure of X by “gluing” more manifolds W™ to the boundary 0X.

When one works in Several Complex Variables, the manifolds X of interest are
those manifolds which carry with them a complex (or related) structure of some
nature: complex analytic structure, symplectic structure, a Cauchy-Riemann (C-R)
stucture, g-convex structure, or Stein structure. If X is a manifold embedded in C*
for some k, it can automatically inherit a complex structure from the ambient space.
In the case of Stein manifolds X, for example, it is always possible to embed X in an
ambient space, but even here it is still normally more useful to think of the complex
structure as being intrinsic.

In this thesis, 1 consider two problems relating lower-dimensional manifolds to

higher-dimensional manifolds with complex structure:

QUESTION. Given a complex analytic manifold X, what conditions do we need
on X so that for every point p € X there is a Stein manifold M without boundary
such that pe M C X7

The question is equivalent to asking when, for every point p in X, there is a way
of finding p in a complex line within X. I have shown that it is possible to do so
for a large subclass of g-convex manifolds called g-complete manifolds. For these

manifolds, we can find p in a proper holomorphic image F(A) of the unit disc in X.
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QUESTION. If X is a strictly pseudoconvex domain (and hence a forteriori a Stein
manifold), how can we attach lower-dimensional manifolds ¥ to it in such a way that

the complex structure is preserved for the union of the manifolds X and X7

Assume Y. is “totally real” - that is, has no complex structure of its own. If ¥ also
satisfies certain tangency conditions on the set where where ¥ meets the boundary
0X of X, then this thesis provides a proof that ¥ can inherit complex structure from
X. We say that ¥ is a “handle” which has been “glued” to X.

Chapter 2 addresses the first of these two questions, and Chapter 3 addresses the
second. The treatment in Chapter 2 extends arguments due to Forstneric, Globevnik
and Stensgnes to the case of g-complete manifolds. The argument draws on many
aspects of complex analysis, and uses two lemmas that extend the clever (and com-
plicated) main lemmas from [7] and [15].

In contrast, the treatment of handles in Chapter 3 is entirely elementary. First,
the “standard” handle (comprised of the unit ball and a flat plane in C?) is shown to
have a neighborhood basis of strictly pseudoconvex sets. This initial demonstration
depends only on symmetry arguments and some elementary analysis. The result is
extended to higher dimensions and more general strictly pseudoconvex domains by

viewing them as locally similar to the canonical case of the standard handle.

2. Previous research

2.1. Proper Embeddings. The existence of a proper holomorphic map F' from
a domain D to another domain or manifold €} has long been a matter of interest to
those who study Several Complex Variables. (For an excellent review paper, see
[6]). The fact that F'is holomorphic means that the complex structure of F'(D) (and
therefore D) is inherited from that of 2. Properness of F' ensures that no information
on D is lost, and that we can therefore consider the complex structure of D itself as
being inherited from that of . It also implies that F/(D) is closed in €.

In a paper published in 1992, Forstnericand Globevnik [7] showed the following;:
For any pseudoconvex domain ) C C* with C? boundary and any prescribed point
p € £, it is possible to find a proper holomorphic map F' from the unit disc A C C

into 2 such that F'(0) = p. Furthermore, if a direction A is given, F' can be found
2



such that F’(0) = bA for some b > 0. Also in 1992, Berit Stensgnes [15] extended
this result to the case of any Stein manifold of dimension > 2, and in this thesis, it

is extended to the class of ¢g-complete manifolds.

2.2. Handles. In 1977, Forneess and Stout [4] showed that, for any pseudo-
convex domain {2 and strictly pseudoconvex point p € 91, one can attach a one-
dimensional “handle” to € in the sense that there exists a Stein neighborhood basis
for the set QU L, where L is the line through p perpindicular to 99.

In 1990, Yakov Eliashberg [3] extended this result considerably in a paper wherein
he showed that a Stein manifold X of complex dimension n with an exhaustion

function that has critical points of index < n admits a filtration
XiccXy;CcC...CC X,

by Stein manifolds X; where each X; arises from X;_; by attaching handles of di-
mension no greater than :. His paper contained, as a crucial lemma, the idea that
one can attach higher dimensional handles to compact complex manifolds with pseu-
doconvex boundary, and hence in particular to pseudoconvex domains. The proof is
difficult, however, and is aimed only at attaching handles up to topological equiva-
lence, so this thesis provides a more elementary, concrete demonstration for strictly

pseudoconvex domains.

3. Basic definitions

The following concepts will be used throughout this thesis. Where possible, the

notation of these definitions will also be preserved.

DEFINITION 3.1. A map [ is proper if the preimage of any compact set in the
range of f is compact in the domain of f. Intuitively, this is means that the boundary

of the domain of f must be mapped into the boundary of the range.

DEFINITION 3.2. f(2) = (fi(z1,---,20),--+, fm(21,...,2,)) is a holomorphic
map if each of the coordinate functions f; are holomorphic, i.e. if each f; is an-

alytic in each variable seperately.

DEFINITION 3.3. A defining function for a domain ) is a continuous function

p:C" — Rsuchthat @ ={z : p(z) <0} and \p # 0 on &. An exhaustion function
3



is a continuous function p : C* — R such that if we set Q. ={z : p(z) < ¢}, then

Q= U Q,, and the level sets satisfy . CC Q.,, for all « € R.
meN

DEFINITION 3.4. A vector A in C* \ {0} is complex tangent to the boundary of
O at p if it satisfies the equation 3 %‘ A; = 0 where p is a C? defining function for
ilp
Q at p.

DEFINITION 3.5. A C? function p is plurisubharmonic at z in C" if its Levi form
satisfies £,(z, ) = kfil %ijk > 0 for all complex directions A € C*\ {0} — that

J

. 52 . " . . .
is, if £_) is a positive semidefinite matrix.
? 02507y,

DEFINITION 3.6. A C? function p is ¢-subharmonic at z in C" if (8328%) has at
J

least ¢ distinct eigenvectors with positive eigenvalues.

DEFINITION 3.7. The Levi polynomial L, for p at p is the second degree polyno-

ial n dp 1 & 3%p
mia ];1 %‘p (Z] _p]) + ij,kzil 0z50z2y

(z; — p;) (zk — p). The Levi support surface
P

for p at p is the surface of 2n — 1 real dimensions defined by the equation L, = 0.

Note that if p is plurisubharmonic then the point p is a local minimum for p on the

Levi support surface.

DEFINITION 3.8. A domain €2 is pseudoconvex if there exists a plurisubharmonic
exhaustion function p for ). That is, p is a function such that the level sets (). =
{z : p(z) < ¢} are all relatively compact in © and p(z) is plurisubharmonic for all
p € 9. We say Q) is pseudoconvex in the sense of Levi if there exists a C? defining
function p such that \p|g # 0 and for all p € K} and complex tangent vectors A to
&) at p, the Levi form %n; %ijk > 0. Note that pseudoconvexity in the sense
of Levi automatically ir]flp_ﬁes pseudoconvexity, but that the converse is true only if

&) is C? smooth.

DEFINITION 3.9. A domain {2 is g-convex if there exists an exhaustion function
p for © which is g-subharmonic on all but a compact subset of points V in Q0. A
manifold X is g-convex if it admits an exhaustion function which is ¢g-subharmonic

on all but a compact subset of points Vx in X.
4



DEFINITION 3.10. If the inequalities in Definitions 3.5, 3.6, 3.8 and 3.9 are
strict, then they define (respectively) the terms: strictly plurisubharmonic, strictly

g-subharmonic, strictly pseudoconvex, and strictly ¢g-convex.

DEFINITION 3.11. A Stein manifold M is a complex analytic manifold with a

strictly plurisubharmonic exhaustion function ¢ such that
M.={zeM:¢(z)<c} CCM

for all ¢, and the set of functions {f : f is holomorphic on M} seperates points.



CHAPTER 2
Disc Embeddings

1. Overview

Our goal here is to prove that the broad class of complex analytic manifolds
known as g-complete manifolds have the property that a proper analytic disk can be

found through any prescribed point inside them.

DEFINITION 1.1. Let Q be a o-finite complex analytic manifold which admits a
smooth exhaustion function p. Assume that for all z in €, p has a Levi form £ with
q strictly positive eigenvectors, all perpindicular to \p when \p £ 0 or ¢ + 1 strictly
positive eigenvectors when \p = 0. If, in addition, the holomorphic functions on 2

seperate points, then we say that 0 is g-complete.

EXAMPLE 1. Assume {2 is a smooth 2-convex manifold on which the holomorphic
functions separate points, and the compact set Vg on which the exhaustion function

fails to be ¢g-subharmonic is empty. Then € is 1-complete.

The key for a holomorphic map from A into £ (also known as an analytic disk)
to be proper is for it to take the boundary of the disk to the boundary of ). Hence
the idea of this proof is to begin with a small analytic disk through p with the
correct derivative, and then to use it as the first in a sequence of analytic disks
whose boundaries are pulled out closer and closer to the boundary of ). We proceed
by means of a series of lemmas, each of which begins with an old analytic disk and
certain conditions and provides a new analytic disk whose boundary is closer to that
of 2. Finally, we take a limit of these disks, which will be proper.

Structurally, Lemmas 2.9 and 2.10 provide the basic tool for “pulling” an old
analytic disk out to the new one. Lemma 2.11 uses this tool when critical points of
p are not nearby, while Lemmas 2.13 through 2.17 set up Lemma 2.18 to do so near

a critical point.



Our work in Lemma 2.18 requires the following lemma, which adapts the proof
of Theorem 1.4.15 in [9] to the case of ¢-subharmonic functions. It will allow us to
write down a standard form for p in a neighborhood of any point — in particular near

a critical point of p.

LEMMA 1.2. If p is a g-subharmonic C* function in a neighborhood of 0 in C”,
then there exists a complex linear isometry t : C* — C* and {)‘1}3‘:1 where A; > 0
such that (with z; = x; + 1244, when j < q),

(1.1) (92,0 0 t(0>)2q _ (Iq +A 0 )

du;0vy ),y 0 I, — A
where I, is the q X q identily matriz and A s the g X q diagonal matriz with entries
Aj.

PROOF. Since the Levi matrix L. = (%%):,kﬂ has g positive eigenvectors, there
exists an invertible complex matrix V' such that

VILV = (60)] jmy + (£60)] pm g
= dg+tm

where [0, is a (¢ + (,m) signature matrix of the form

Lye 00
0 —I, 0
0 0 0

for some £ > 0 and m < n — g— (. Let v be the complex linear isomorphism defined
by V.
Without loss of generality, p(0) = 0 and dp(0) = 0, so that the Levi polynomial

for p at 0 is simply 3 aajpa(gi zjz, and the Taylor expansion for p at 0 is given by
= 9p(0)
p(z) = |+ ) £ lzg* £ |z P+ R j%::l mzjzk +o (|2|2)

= |zl 4l R + 0| |2+ 0 (|=)

J

L 0%p(0)
7%::1 62]62% %k

L

where z/ = (z441,...,2,). The essential difference between this and our goal in
Equation (1.1) is the nonzero cross terms in the truncated Levi polynomial L. Our

task is to find a complex linear isometry u that will diagonalize its matrix.
7



Take real and imaginary parts of the matrix for the truncated Levi polynomial:

(azp(o))q = A+iB
62]02% k=1

: A -B
and define a real 2¢ x 2¢ matrix R by R = (—B A (where A and B are real
n x n matrices). For notational purposes, we let y; = x,4; so that we may also

write z; = x; + 1y;. Also, let x = x(2) = (#1,...,2,) and y = (y1,...,Y,). Since

o _1(o .o
% T2 (8% Zayj) and

J00) _(@pl0)  0%pl0)) L (0%p(0) | 0p(0)
aZ]‘aZk_ 6:1;]6:1;k 6yj8yk ! 8:1;j8yk ay]‘al'k ’

we see that
9°p(0) _ [ 9Pp(0)  9*p(0)
éR [M%Zk N 6:1;]6:1;k B 6yj8yk (l’]l‘k B y]yk)
[ 9%p(0)  D*p(0) Y . :
— (axjayk + s (txjyr + 1y;ap)

_ [ P*p(0)  9*p(0) 9%p(0)  9%p(0)
N (axjaxk Oy 0y (zjee) + 0z ;0yy, * dy;0xy, (zjyx + yjvr)

9?p(0)  9%p(0)
B (8@8@ B 8yj8yk (y]yk)

g 02,0(0) . ) ) .
= s Z Zifk| = (A'va)_(lB'le}I)_(ZB'Y7ZX)_(A'Y7Y)‘
k=1 62]62%
Thus
q
L%:% Zgaz:kZ]Zk = (#-x,%)
and

px) = (x+ R-x,x)+ O(|'] - |2]).
Note that R is a real symmetric matrix, so all of its eigenvalues are real. If

x = x(e) is an eigenvector of R with eigenvalue A then

X(1€) = (—Tgq1ye vy —T2gy T1yee vy Ty)
: : —-A +B\ .. . : :
is an eigenvector of LB A with eigenvalue A and hence a eigenvector of R with

eigenvalue — .

From Chapter 7, Theorem 2.9 in [1], there exists an orthonormal basis of eigen-

vectors x; for R. Choose ey,...,¢e,in C? x 0), |e;] = 1 so that x; = x(e;) is an

n—gq times
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eigenvector of R with eigenvalue A; > 0. Since the x; are orthogonal, so are the e;.
Complete {e;} to an orthonormal basis for C* by letting e; = (0,...,0,1,0,...,0)
be the remaining unit vectors in the directions of the z; axes when 7 > q.

Let u be the complex linear map defined by u(z) = ¥ zje;. Then since the ¢
form an orthonormal basis for C*, u is unitary. In terms of x, u is represented by
the matrix

zi(er) ... xi(ey) xi(ier) ... x1(iey)

U:= : : : :
zoler) .. wyley) xglier) ... wxyliey)
Define A to be ¢ x ¢ the diagonal matrix with entries A;. Then note that the matrix
U was chosen to diagonalize R, so that

A1

U™'RU = = A® (=A).

We have
(1.2)
plvou(z))=(U-x+RU-x.U-x)= (U7 x+ U RU - x,x)

=(x+[AB(-A)] -x,x)=(x,%x)+ ([A & (—A)] - x,x)

q 2q q
zlefcyl“rZA 25 = D JaP =D Al
Jj=1 Jj=1 J=q+1 j=1

q
=3 (14 X)|a* + Z (=14 Xj—g)]z;]?
7=1

J=q+1

with an error of O (|z'] - |2],|2]?). Complete the proof by setting ¢ = v o u. O

2. Results for ¢-complete domains

THEOREM 2.1. Let Q be a g-complete manifold, ¢ > 1 with exhaustion function
p. Let p € Q and X a complex tangent to M at p. Then there exists F': A — )
such that F' is proper, F'(0) = p, and F'(0) = AX for some XA > 0.

That is, given any g-complete manifold ) and any prescribed point p € (), a
proper analytic disc passes through p.



COROLLARY 2.2. Let Q be a smoothly bounded g-complete domain in C*. Let
p € Q and X a complex direction. Then there exvists F' : A — Q such that F s
proper, FI(0) = p, and F'(0) = AX for some A > 0.

REMARK 2.3. Since the most difficult case is that where ¢ = 1, it suffices to

prove the theorem for ¢ = 1.

According to Morse’s theorem, since ) is a complex analytic manifold, there exists
an exhaustion function for €2 whose set of critical points contains no accumulation
point. In particular, one can assume that if p is a critical point of p then there exists

an open interval I about p(p) € R such that there exists no critical point ¢ of p with
plg) € 1.

DEFINITION 2.4. From Theorem 5.3.6 in [10] and Definition 1.1, there exists a

holomorphic, regular, 1 — 1 embedding £ : Q@ — CV for some N. Let Q* be an open
neighborhood of F(2) in CV with a holomorphic retraction m : Q* — E(Q).

NOTATION. Throughout this section, we will have the following:

o We take 2, Q*, m, and F as in Definition 2.4.

e When V)| # 0 welet e; = €1(z) be the unit vector in the direction
of W|.. When \p| = 0 it is a unit eigenvector of £ in one of the
two or more directions for which the Levi form £,(z,e;) for p is
positive.

e For each z € Q, e3 = ey(z) is a unit eigenvector of £ in a direc-
tion perpindicular to e; for which the Levi form £,(z, es) for p is
positive.

e The symbol A denotes the open unit disk in C.

e The symbol Q, denotes the level set {z € Q : p(z) <t} fort € R.

e The maps F' and ( are always of type I, G : A — (), continuous
on A, and analytic on A.

e If fis a map, and a set S is in the domain of f, then f(S) denotes
the set {z € Range(f) : f(s) = z for some s € S}. If the range
of f is a subset of R, then we write a < f(5) < b if and only if

a< f(s)<bforall ses.
10



DEFINITION 2.5. Two maps F' and G are said to match if F'(0) = G(0) and
F'(0) = G'(0).

DEFINITION 2.6. Given a g-complete manifold {2 with exhaustion function p and
embedding E, we say that G is (¢, R)-close to I if G matches F', p(G(z))—p(F(z)) >
—eforall z € A, and |E(G(2)) — E(F(z))| < e for all z € A with |z] < R.

LEMMA 2.7. If0 & Crit(p), then there exists another function p such that
Ko ={z : p(z) =0}

and such that for all z in a neighborhood of Xy, both L;(z,es) and L;(z,e1) are

strictly positive. That is, p is 2-subharmonic near &g.

Proor. Consider functions of the form

p2) = pl2) + Ap*(2)
for constant A > 0. Take z € )g. We have
Li(z,e0) = L,(2,2) + 2ApL (2, e2) + 24|\ - €|
= L,(z,€)
since p = 0 on &Y and ¢, is chosen such that Vp - ey = 0. Also,
Li(z,e1) = L,(z,e1) +2ApL (2, e1) + 2A|Np - e

= L,(z,e1) + 2A[Np[*
so by choosing A such that

we obtain a new defining function of )y in a neighborhood of &y with positive Levi

form in the directions e; and es. O

The following extension of a fact from [7] allows us to “trim back” an analytic
disk to a level set of p. That is, the intersection D of an analytic disk with a level
set of p is itself an analytic disk, by virtue of the fact that we can use the Riemann
mapping theorem to map A into the preimage of D. Thus, this lemma will allow us
to assume that the boundaries of our analytic disks lie on level sets for p. In light of
Lemma 2.7, and the fact that the rest of our lemmas are local with respect to level

sets of p, we can assume in the rest of this section that £,(z,e;) > 0.
11



FIGURE 2.1. “Pulling” the boundary of an analytic disk

LEMMA 2.8. Given an analytic map F : A — Q with p(F(0)) = a, and a real
number b > a, there exists an analytic map G : A — Q equal to I on F~1(Q,) such
that G(OA) C Q. If p(F(OA)) > b, then p(G(IA)) = b.

PROOF. The first paragraph of the proof of Lemma 1 in [7] may be used verbatim.
O

We now want to construct the basic process for “pulling” the boundary of F/(A)
toward the boundary of  (Figure 2.1). The idea is that, as long as we are increasing
p on the boundary of the image F(0A), it is getting closer to the boundary of €.
How might we increase p? Observe that in local coordinates the Taylor series for p

about a point pq is

p(p) = p(po) + Ly (p — po) + L(po, p — po) + olp — pol*).

If we consider p restricted to the Levi support surface {L,,(z) = 0}, then

p(p) = p(po) + L(po.p — po) + ol|p — po|*).

Assume that we know p — pg lies in one of the directions for which the Levi form
L(po,p — po) is strictly positive. Then we obtain, for some ¢ > 0, L(po,p — po) >
C|p - p0|27 or

(2.1) p(p) > p(po) + %c|p — pol?

for p sufficiently close to po.

Although we cannot directly choose a point p to which to pull A, we can never-
theless use this idea to accomplish our actual goal: to increase p on dA. A small disk
image about p lying simultaneously in the Levi support surface and in a direction for

which £ is positive would have p larger on its boundary than at the origin. Simply
12



by knowing that we had pulled A to any boundary point of that disk, we would
know that we had increased p. Equation (2.1) shows that the amount of this increase
depends (when p is close to pg) only on the radius of the disk.

By placing small analytic disk images A all around the boundary F'(dA), and
pulling to their respective boundaries, we obtain a method for increasing p at the
boundary of A. Below, Lemma 2.9 provides the “pulling” technique, while Lemma
2.10 provides a way of placing the disk images at boundary points. What obstructions
can we find to the size of the increase of p? (This is equivalent to asking what limits
the radii of the disk images A;.)

First of all, we need the second-degree approximation ignoring the error o(|p—po|*)
to be accurate all around the boundary of the disk images. The error is a function
that depends on the third and higher derivatives of p, and can be bounded, say, in
any compact subset of 2. Second, technical limitations in Lemma 2.9 limit the size
of the disk images depending on the embedding F of ) and the sizes of coordinate
neighborhoods for €.

Finally, and most vital to our analysis, is the requirement that the disk images
lie in Levi support surfaces. For the disk images to be chosen smoothly means that
they must be 1-dimensional manifolds, so the Levi support surface in which they lie
should themselves be regular manifolds. So long as pg is not a critical point of p, this
is possible — locally, at least. However, the Levi support surfaces cease to be regular
manifolds as they approach a critical point, so the maximum size of a disk image at
po 1s limited by the proximity of py to a critical point of p.

This last obstruction illustrates the basic dichotomy between regular points and
critical points that affects our construction. Disks can be pulled using the method
outlined above, so long as no critical points are nearby. The problem of increasing
p near a critical point, though, will the require special treatment in Lemmas 2.13

through 2.18.

LEMMA 2.9. Suppose I' is as above, with constants d,¢ >0 and 0 < R < 1, and

a collection of smooth holomorphic maps A¢ : A — Q such that A; varies smoothly

with ¢ € A with A¢(0) = F(C). Suppose also that we have ro such that each disk
13



image A¢(A) satisfies the size condition

[E(F(C) = E(Ac(w))] < 70
for all ( € A and w € A, with r so small that for all z € E(F(A)), B,,(z) cC Q*.

Then there exists a holomorphic G : A — Q which is (¢, R)-close to F, so that
for each ( € DA\, there exists £ € O\ such that

[E(G(Q) = E(A(&)] < 4.

PRrROOF. Define

H((,w): 0N x A — CV

by
H(Cw) = B (Aclw)) — B (F(O)).
Let
iaxow

be the Weierstrass polynomial for H. Note that H((,0) = 0, so ag = 0. For m € N,

we define -
Hy (G w) = Z;aj(C)w]
and we let -
pm) = max [H(G,w) ~ (G,
Observe that lim,,.o n(m) = 0, so that this cutoff approximation can be made

arbitrarily accurate. Note that on dA, ( = 1/, so for each j we choose polynomials

le e PJN and Q]l e Qj\f such that for
P, (¢)=(PC),....PN(0))
and
Q; (1/¢) = (Q} (1/Q),...,QF (1/0))
we have
|a;(¢) = P;(¢) — Q;(1/¢)] <

Let / € N be greater than the degree of any of the Qf, and define the polynomial

m).

)= 3PS (C) + Qu(1/0) ¢,

=1
14



Then since ¢ is so large, no negative powers of ( occur in f,,, hence f,, is defined
(and bounded) for all { € A.
We also have
m
(22) 7€) = H(C. ¢ < nfom) £+ m ™ = 3y
for ( € A, so the f,, form an arbitrarily close approximation to H. f,, will give the

“bump” function we add to I, so we also want to make sure that it changes F' very

little inside |z| < R in order to keep our new “bumped” analytic disk (¢, R)-close to

F(A). Take v to be so small that for z € E(F(A)), we have
p(F(2) = po B om (B(F(2)+91)| <e  forallt e BY cCV
By choosing ¢ sufficiently large, we ensure that
(2.3) fm(2) <7 for all |2] < R.
and that f(0) = f'(0) = 0. Equation (2.2) implies
7 (B(F(O) + Fn(Q) = B(F(Q) = H(G,C)] =0 as m — oo
for ¢ € AA. Choose m so large that
T (B(F(O) + fulQ)) = E(F(Q) = H(, S| < 8

for all ¢ € AA. We define

G(z) = E7 o (E(F (2)) + fn (2))
Then Equation (2.3) implies that G is (¢, R)-close to F', and we have

[E(G(C)) = B(AL)] = 7 (E(F(O)) + f2(0) = (B(F(¢)) + H(C, ()|
<4

for ¢ = (%, as required. O

Now we provide a method for creating disk images for use as input to Lemma

2.9.

LEMMA 2.10. Given F with p(F(0A)) N Crit(p) = 0, there exist a constant
a > 0 and holomorphic maps A; : A — Q such that A; varies smoothly with ¢ € A,
A (0) = F(Q), and for all (,£ € DA,

p(Ac(E)) > ,105(A<(0)) + o



Furthermore, we can assume that the A. satisfy the size condition in Lemma 2.9.

PROOF. For ¢ € A, define a manifold in which to place an analytic disk image
by
S¢i=(e1,e2) N{z € Q 1 Lpy(2) = 0}

where L denotes the Levi polynomial. Note that S is generically 1-dimensional,
so by taking a small perturbation of L if necessary, we can assume S is indeed 1-
dimensional. Also, since there are no critical points near F(9A), we can assume that
the S¢ vary smoothly in ¢ — at least near F(0A).

Let

c = Zrilir% [/:,;(F(C)v 62)]
(€A

and note that ¢ > 0 by our choice of ¢; and e,.

Choose a neighborhood M of ( so that the Levi polynomial L has no critical
points in M, and a defining function s : C — Q for S; in M such that s(0) = F(().
Note that for each (, L is holomorphic, so s is holomorphic as well. By our previous
discussion, we know that since S¢ is in the Levi support surface for p, we can shrink

M (if necessary) to the point that for any a,b € R where F'(¢) 4 ae; + bes € M,

p(F(C) + aey +bes) > p(F(Q)) + 5 (Ja* + [bf?)

Let D C C be the largest disc (say of radius r) centered at the origin whose image
under the map s is contained in M and satisfies the size condition in Lemma 2.9.
Define A¢(z) = s(rz).

Given ¢ € 0A, we find ag, bg € C so that

Ac(€) = s(ré) = ( + ager + bges.
Now let ( vary, and define

- ¢|? ¢|?
m = min U%‘ —I—‘bg‘].
¢,£€0A

By compactness, m > 0 and the choice of M ensures that

p(AUE) > T +p(Ac(0).

Thus we define o = R O
16



FIGURE 2.2. The analytic disks A, along the boundary F(A)

Combining Lemmas 2.9 and 2.10 gives the basic method for pulling the disk

boundary when no critical points are involved.

LEMMA 2.11. Given F' as above, € >0 and 0 < R < 1 such that
o(P(@A)) N Crit(p) = 0,

there exists an o > 0 independent of € and R and an analytic map G which s
(e, R)-close to F with

p(G(C)) > p(F(C)) + a/2
for all { € OA.

PrRoOF. Use Lemma 2.10 to create a and A;. Choose § sufficiently small that

whenever
|z —w| <d for z,we E(N)
we have
p (E7(2) = p (E7M(w))| < 0/2.
Lemma 2.9 then provides G O

REMARK 2.12. The size a of the increase in p(dA) obtained by Lemma 2.11
depends on two things — both arising in the proof of Lemma 2.10: first, the size of
the Levi form in the e; and ey directions affects how quickly p increases on the disks
A¢(A); second, the distance of F(JA) from critical points of p determines the radii

of those disks. Our increase o goes as the product of these quantities.

We are now ready to address the problem of pulling the boundary of our analytic
disk in a region near a critical point. We begin with a lemma that shows we can get

as close to the critical value as necessary.
17



LEMMA 2.13. Given F, a eritical value ¢ of p, € > 0, 0 < R < 1, constants
a <b<csuchthat \p #0 in Q.\ Q,, and F such that F(OA) C Q. \ Qy then for all
d < ¢ there exists a G which is (¢, R)-close to F' such that p(G(9A)) = d.

PRrOOF. Take ¢ such that d < ¢/ < ¢, and in Lemma 2.10 choose the radii of the
analytic discs A¢ so small that p(A¢(€)) < ¢ for all (,& € AA. Use these as input
to Lemma 2.9, along with § so small that p(G(z)) < C‘;—C/ Repeat this procedure
if necessary until p(F(0A)) > d. Finally, use Lemma 2.8 to trim back G so that
p(G(OA)) = d. O

Now we need to show that the analytic disk boundary can be pulled past the
critical value in regions away from a critical point. The idea here is to choose the
disk images A, as normal outside a small neighborhood of the critical point, while
choosing them to be infinitesemally small near the critical point. Away from the
critical point, we can increase p an essentially fixed amount (see Remark 2.12), so
we can pull past the critical value. By doing so, we reduce the problem of pulling
the disk boundary beyond a critical value to a local problem of pulling it past the

critical value in a neighborhood of the critical point.

LEMMA 2.14. Suppose F' is as above, and we have a critical point zy of p with
critical value ¢, ¢ > 0, 0 < R < 1, and constants a < b < ¢ such that \p # 0
in Q. \ Q. Assume also that F(OA) C Q. \ Q. Then there exist a G which is
(e, R)-close to F' and an open arc A CC OA such that G(A®) CC N, for a coordinate
neighborhood N.,, and such that p (G (A)) > c.

0’

PROOF. Choose an open neighborhood U CC N, of zy small enough that F'(JA) ¢
U, and let n = dist (U, 0N, ). Let

Q=0.\ 0\ N,,.
As in Lemma 2.10, we define
Spi=(e1,e2) N{z€Q : L,(2) =0},

for all p € 0.\ Q, and choose analytic disks D,(A) C S,. This time, choose the

disks with the additional criterion that if p ¢ U, then D,(A)NU = (. For p € U,
18



just let D,(A) = p. We will see that increasing p using these disks will yield the
desired analytic disk G.

The set  is compact, and bounded away from any critical points, so for all p €
there is a global minimum « for the quantity p(D,(dA)) — p(p). This o depends
on three things: n; the size of ,Cp(ﬁ, ¢;); and the distance between 2. and the next
critical point whose critical value is larger than c.

By Lemma 2.14, we can assume the map F' has the property that
p(F(0A)) > c—afd

For ¢ € A, define A¢ = D). Apply Lemma 2.9 to the disks A, with the constant

§ chosen so small that whenever
|z —w| <d for z,we E(N)
we have
o (E7(2) = p (B~ (w))] < a/2.

Let ( be the resulting map, and define

A=F7(Ng)naA.
Then for ( € A,

p(G(C) > c+al4

as required. O

Here we have a technical lemma generalizing the above.

LEMMA 2.15. Take F' with F(OA)N Crit(p) =0, constants ,¢ >0, 0 < R < 1,

and arcs

U ccV ccoA.
Then there exists o > 0 and G which is (e, R)-close to F' such that
[E(G(Q) = E(F(Q)] <o
for ¢ e U, and

p(G(Q) > p(F(() +a

for ¢ € Ve, « is independent of 8, €, and p(z) for z in a small neighborhood of F(U).
19



PRrROOF. The proof here is exactly like that of Lemma 2.14. Simply substitute V'
for N, . O

We are finally ready to create a method for pulling past a critical value in the
neighborhood of a critical point. According to the following analysis, Lemma 1.2
provides a standard, coordinatised form of p to work with. Clearly we can assume
that we have holomorphic coordinates in a neighborhood of zy such that zy = 0.
Lemma 2.7 allows us to assume p is 2-convex. Thus we see from Equation (1.2) in

the proof of Lemma 1.2 that there exists a coordinate transformation such that

p(z) = (14 M)|1]? + (1 + Ag)|z2f?
— (1= Xa)lasl* = (L= A)|aal* + 0 (1] 2] + = + |22 ) -

Scaling each coordinate by a factor of 1/(1 + A;) and relabelling x5 and x4 as y; and

Yo yields the standard form we require:
p(z) = @i + 23 — i — cayy + oz’ [2*) + O(lzsl, .. [aw]) - O(]2])

for ¢; = (1 — X;)/(1 + Xj).

In the proof below, we use the fact that F/(JA) has not yet quite reached the
critical point to pull it in a succession of directions leading away from the critical
point. These directions are provided by a series of functions p; which are similar to,
but not equal to, the original p. Naturally, analyticity of the map G doesn’t depend
on the function according to which we have “pulled” F', but it ¢s necessary to choose
the p; in such a way that G will indeed pull the boundary of our disk past the critical

value c.

LEMMA 2.16. Suppose zg is a critical point of p with critical value 0. Assume
also that there is an arc V CC N, such that

p(F(OA)\V)>5>0

where N, denotes a coordinate neighborhood of zo with coordinate function b Then
given € > 0 and 0 < R < 1, there exists G which is (¢, R)-close to F such that
p (G(OA)) > 0.

20



FIGURE 2.3. The map F'(JA) misses the axis

ProOOF. Let W C N,, such that V CC W, and find open sets Vg, U;, and V; with
WD WwoDVioDU oD Vo oD Uy, DD ...

and

V.o Vi
€N
Choose (¢;, R;) so that >-72, ¢, < e and R < R; /' 1 and assume without loss of

generality that e < 3. Take holomorphic coordinates z; in N, such that

0 0
,C (Zo, 8—21) > ,C (Zo, 8—22) > 0.

Then according to Lemma 1.2, we can choose coordinates in N, so that zp = 0 and

p(z) = a1 + a3 — i — ey + f(2) + g(2)
for some bounded, continuous f(z) = o(|z1|%, |22]*) and g(z) = O(|z3],...,|zn]) -
O(4).
Note that dimg(9dA) = 1 so that F(9A) generically misses the axis x; = x5 = 0.
Thus by taking (if necessary) a small perturbation of the map F' we can assume
that there exists a constant i > 0 such that 27 + 23 > 2# for all points in F(9A).

Assume without loss of generality that 2n < (3, and choose constants d; > 0 such
that > d; < 4 for a ¢ so small that whenever

|z —w| < d§  for z,w e E(Q)
we have

(2.4) (B (=) = p(BHw))] < Lanin(1,[Dg()| ),



We now use a trick to get past the critical value. The preceding lemmas do not
depend on p being an exhaustion function, but rather only on the fact that there are
two positive directions for the Levi form of p. Consider such a function

pi(z) = i + 23—yt — ny;.
Note that w € F(JA) = pi1(w) > 0 so that we can combine Lemmas 2.15 and 2.11

with our choice of ¢ = €y — % to obtain a new Fy which is (e, Ry)-close to F'

9
82’1 ?

such that for each { € A, there exists £ € A with

[E(F(C) = E(A)] < b,

as well as the properties that

p(F1(¢)) = p (F'(C) > —&
and
p1(F1(C)) = p1(F(Q) > —e
for ¢ € F~1(V{) N OA. Most importantly,
p1(F1(C)) > 2n

for ¢ € F7H(U;) N AA. We have now improved our situation to the point that
pa(Q) 1= i + a3 — 2nyi — 2ny; > 0

when ¢ € F~1(U;) N oA.
Repeat the process (using Lemmas 2.15 and 2.11) we used to obtain Fj from py
above, this time using the function p; and the map F} as initial data. We obtain F;

which is (€2, Ry)-close to F} such that for each ( € JA, there exists £ € A with

[E(F(C)) = E(Ac(§))] < b,

as well as the properties that

p(F2(Q) = p(F1(¢) > —e2
and

p2 (F2(C)) = p2 (F1(Q)) > —€2
for ¢ € Fy (V) NaA. Also,

P2 (Fz(ZCZ)) > 2n



for ¢ € F~1(U) N OA. We can repeat the process n times, so long as nn < 1 (that
is, so long as p, is strictly 2-subharmonic).

Choose n sufficiently large that 1 > nn > max[c, ¢3] to get

vi g —yr — Y < palz) = 2t + g —nny; —nny; < plz) — g(2)
near zo. We obtain £}, which is (¢/2, R)-close to F' and has p,(F,(0A) N U, ) > 2n.
Note that since we always chose our disks A, in the ey, e; directions, the function

g(z) can be seen from equation (2.4) and our choice of the §; to satisfy

g (F(Q) = g (F(O)] <.
Thus F, has
p Q) = p(F(¢)) > B—€>0
for ¢ € F7Y(W<) N aA, and
p(F.(6)) > p (Fu(C)) — 9(C)
> pn (Fa(C)) —
>n>0
for ¢ € F7H(U,) N OA.
We now have that p(F,(¢)) > 0forall ¢ € AA\F~1 (W \ V). The set F=1 (W \ V)
is contained in two arcs which are removed from a neighborhood of the critical point,

so we simply use Lemma 2.15 to obtain G from F, such that G is(¢, R)-close to F,
with G(0A) > 0. O

We are now ready to prove that it is possible to pull the boundary of our analytic

disk completely past a critical point.

LEMMA 2.17. Suppose zy is a critical point of p with critical value 0, and for
arbitrarily small constants a < b < 0 there is ' with F(dA) C Q% \ Q.. Then for
one such F', and any ¢ >0 and 0 < R < 1 there exists G (¢, R)-close to F' such that
p (G(OA)) > 0.

PRrROOF. Use Lemma 2.14 to create the input for Lemma 2.16. The resulting &

is the desired function. O

The final lemma sets up the framework for the limiting sequence of analytic disks

used in the proof of the theorem.
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Vi

(Fr-1 + H)(0A)

N Froa (00
FIGURE 2.4. The succession of maps increasing p (F (9A))

LEMMA 2.18. Given N € N, e >0 and0 < R < 1, and F such that F(A) C Qy,
there exists G which is (¢, R)-close to F such that p(G(9A)) > N.

PROOF. Let (¢;, R;) be chosen so that 3, ¢ < e and R < R; — 1. Assume
without loss of generality that p (G(9A)) = 0, and let the critical values for p between
0 and N be {¢;}7;. Use Lemma 2.11 a finite number, say k; times to obtain a map
Fy

obtain [}, 41, and proceed to apply Lemma 2.11 ky times to obtain Fj,41, ¢z suitable

and a critical point ¢; suitable for input to Lemma 2.17. Apply Lemma 2.17 to

1

for input to Lemma 2.17. Continuing the process, we end up with the required map

Proof of Theorem 2.1 We want to show that it is possible to use the lemmas
above to create a convergent sequence of holomorphic maps from A into 2 whose

limit is proper. Begin by finding a § > 0 so small that whenever
|z —w| < forz € E(Q) and we C”

we have
w € )*.

Without loss of generality, we can assume that § < 1.
24



Choose (¢, R;) so that Y- ¢; < §, and R; /1. Take a coordinate neighborhood
(M, ) of our prescribed point p with ¢(p) = 0, and put a small linear disk F :
A — (M) in (M) in such a way that F’(0) = 1.()\). For the succession of i € N,
use Lemma 2.18 and Lemma 2.8 to construct F; such that p(F;(0A)) = ¢, and F; is
(€i, Ri)-close to Fi_;.

We want to prove that the sequence F; converges uniformly on compact subsets
of A. First, we need to see that the pointwise limit exists for any z € A. Let £ € N
be large enough that |z| < Ry, and note that by the Definition 2.6 of (e, R)-closeness,

B (P (2)) = E(F ()] < «

for 1 > k. Hence
i+l
(P (2)) — B (F ()] < ¢ <
7=t

Therefore the sequence E (F; (2)) is bounded, and hence has a limit z.,. By regularity
of F, and the fact that F (F;(z)) € E(Q) for all i, we see that z., € E(f). Define
the pointwise limit function F of the F; by F(z) := E~ (2.).

Let K CC A and ¢ > 0. Define

(S]‘ = Z c;
=7
and note that §; — 0 as 7 — oco. Since K is relatively compact in A, there exists a
k, € N such that
K CH{z : |z2| < Ry }.

Choose ky € N such that 6, < ¢, and define k = min [k, k2]. Then for all z € K and
0>k,

[E(Fe(2)) = E(F(2)] < 2 [E(F () = E(Fja (2))]

o0
<26
=
< (Sg < (Sk
< €.

Hence F; — F' uniformly on compact subsets of A. Since the F; are holomorphic, so

is . Our only remaining requirement is to show that I is proper.
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Take a sequence {z;} in A with |z;| /1. Given M € N, we want to show that
there exists & € N such that

p(F(z)>M V¥V j>k
For any 0 < R < 1, let
Ar={z : R<|z| < 1}.
By continuity of Fasis, there exists B < 1 such that
p (Farz (Ar)) > M+ 1.
Choose k such that z; € Ap for all j > k. Then by Definition 2.6,
p(Fisr (2)) = p (P (2) > —6
for all z € A, so that
p(F () = p(Fi () > —f;ej =)
We conclude that -
p(F () > p(Farsa () = 1> (M4 1)~ 1> M

whenever 7 > k.

To complete the proof, note that any compact subset Q of Q is contained in a
level set 2y for some M. The above analysis shows us that there exists an R such
that Ag N F~1(Qa) = 0. Hence F~'(Qy) CC A and we see that F'~* (Q) is a
compact subset of A. Therefore F' is a proper analytic map from the open unit disk

A into €.
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CHAPTER 3

Handles for Strictly Pseudoconvex Domains

1. Overview

Our goal is to prove that it is possible to attach a lower-dimensional handle X
to a strictly pseudoconvex domain D in such a way that the union X = D U Y is
holomorphically convex. In particular, we would like to show that for properly chosen
handles, X has a Stein neighborhood basis. The techniques used in this proof will be
elementary: nothing more than a little integration and some symmetry arguments.

We begin by finding an explicit Stein neighborhood basis for the most basic
possible example: the unit ball B (or actually an ellipsoid E) and a flat, totally
real plane in C*. Note that B is strictly geometrically convex, a forteriori strictly
pseudoconvex. Because the ball and plane have such simple geometry, it is possible
to calculate exact conditions for neighborhoods € of X to be pseudoconvex. Once
we obtain neighborhoods satisfying these conditions, they will provide the needed
Stein neighborhood basis.

After finding a Stein neighborhood basis in this special case, we use some tricks
to extend our results to strictly pseudoconvex domains. In essence, we will reduce
the general case to the hyperbolic case, and the hyperbolic case to an adaptation of
the construction for the ellipsoid.

In each of these reductions, as well as the construction of the Stein neighborhood

basis for the ellipsoid and flat plane, the following well-known lemma will be useful:

LEMMA 1.1. Let ¢y and ¢ be smooth (strictly) plurisubharmonic functions de-
fined on an open set U C C*, with (d¢y # dpy on) K ={z : &1(z) = ¢a(2)}. Then

there exists a smooth (strictly) plurisubharmonic function t» on U such that

o Y > max(¢r, ¢2).

o ¢ = max(p1, p2) outside a small neighborhood of K.
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o o — max(py, dq) is arbitrarily small.

For our purposes, Lemma 1.1 says that a domain D arising from the intersec-
tion of two strictly pseudoconvex domains D; and D; is strictly pseudoconvex in
the sense that it can be approximated to arbitrary accuracy by a smooth strictly
pseudoconvex domain contained within D). To see this, consider ¢, @2 and ¥ to be
defining functions for the respective domains Dy, Dy and D. Note that the lemma is
a local result, so that the domain D is strictly pseudoconvex so long as it is locally
a transverse intersection of strictly pseudoconvex domains.

Lemma 1.1 is a smoothing property of plurisubharmonic functions. For a proof

see [10].

2. The ellipsoid E and the z,-z, plane Xp

2.1. Preliminaries. We begin by defining precisely what we mean by an ellip-
soid and the flat handle to which it will be attached. Let z = (x1 + iy, 2 + 1y2) and
define

(2.1) o = |z|* +cy* =1 <0
for a constant ¢, so that our ellipsoid is
E={:: ¢r(z) <0}.

Our flat handle must lie in a particular direction in order to attach properly to the

ellipsoid. We let
Yp=1z : y1 =y2 = 0}.
so that the domain for which we want to find a Stein neighborhood basis is
X =EUZXp.
Finally, we let the ball B have the defining function
on(z) = |+ — 1.

First we will examine the structure of a (not necessarily Stein) neighborhood basis
for the set X, and then we will try to find such a basis that is Stein. Our technique

will involve finding a function that satisfies a certain differential inequality. For
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purposes of illustration, we will begin with a brief analysis of the case E = B, which
will point the way to solving the problem for all E.

Since X is cylindrically symmetric with respect to x; and x5, and also with respect
to y; and ys, we consider a defining function ¢ for a neighborhood basis element 2

of the form

(2.2) él=) = lyl* = x (=)
where y € C*(R,R), and let Q = {z : ¢(z) < 0}. If a neighborhood basis element
) is defined by such a ¢, then it will have the same cylindrical symmetry as X.

REMARK 2.1. If x(t) = (1 —t) /c then ¢ = ¢, so that Q is just the ellipsoid.
If instead x(t) = Const., then  is a neighborhood of ¥p. We want to choose x
to interpolate between these possibilities while keeping the Levi form of ¢ strictly
positive in complex tangent directions. By doing so, we ensure that () remains strictly

pseudoconvex.

We can compute the Levi form 37 8282—8¢51€)\ij of ¢ and the complex tangents
gk=1 "

A= (%, —%) to the boundary &2 = {z : ¢(z) = 0} explicitly in terms of
derivatives of y. Hence it is possible to write down the Levi condition for the set 2
to be strictly pseudoconvex explicitly in terms of derivatives of y. See Appendix A

for details of these computations. We find that the Levi form for any cylindrically

symmetric ) with a defining function as in Equation (2.2) is

1
(2.3) Lo(z,A) =5 (I + 2> (X)) (1 = x) = (212 — 221"\
We can bound the last term in Equation (2.3) from below to obtain a more symmetric

estimate

Lol 0 > 5 (1 4 ol () (1= x) eIyl
Using the fact that the Levi condition needs to hold only for z on the boundary
&), where ¢(z) = 0 and hence |y|? = x, we substitute x for |y|>. We have reduced
the problem of finding a neighborhood basis element that is Stein to the problem of
locating a y satisfying the following five conditions:
(1): x(t) > (L —t)/cfor t <1, x(t) > 0 for t € [1,00).

(ii): X'(t) = —=1/e for t = 1.
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(iii): x"(t) > 0 for all ¢.
(iv): x(t) = & for some constant §; and all t > 1 + a for a positive a.

(v): L= (x+ 2P (¢)7) (1= X) = 2[e[*xx" > 0

2.2. A First Try. Conditions (i) and (ii) arise from Remark 2.1. They imply
that we are expecting y’ to interpolate between ' = —1/¢ and y' = 0. It is therefore
reasonable to assume (initially, at least) that x’ < 0 in our region of interest. Also,

the differential inequality (v) for Ly can be written

(2.4) Lx =22 () = 200") +x (1= x) = (I () > 0.
Under the assumption x’ < 0, the second two terms in Equation (2.4) are
x(1=x)>0
and
=X (]z[*(x)?) = 0
since y is positive. We therefore need only to make the first term |z|? ((X’)2 — 2xx”)

positive, so we consider first the differential equation

(2.5) () = 2xx" =0
(2.6) X' = (952 .

Equation (2.6) can be solved by logarithmic integration to find that
X(t) = (C1 = Cat)?

for some arbitrary constants C'; and C5. For simplicity, we let ¢ = 1 and take initial

conditions
x(1) =e

X(1)=-1

corresponding to the unit ball. We obtain the parabolic solution

(2.7)

(2.8) olt) = iu FE—

This xo clearly satisfies Condition (v) on [1,1 + 2¢) since x; < 0 in this region.
| = 1 4 2¢, we have yo = X = 0 so that Yo fails Condition (i)
30
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above. That is, since x is not strictly positive it fails to provide an open neighbor-
hood of the plane.

The obvious remedy to this problem is to “lift” y¢ off the plane by considering
the function xs(t) = x(¢) + ¢ for some small § > 0. Note that 5 = x{ and \§ = xo-
We must exercise caution, however, because this “lift” alters the Levi form of ¢.
Computing the new Levi form, we run into a new difficulty: " = 1/2¢, so when
t =1+ 2¢, we see that Condition (v) has

Lo =621+ 20)(5)
< 0.
We can analyze this problem in somewhat greater generality. Whenever xj = 0 we

can write Equation (2.4) as
Ly = e’ (=20") + v = x (1 = [2[\")
> 0.

From this, it is clear that we need to find a y such that y” is smaller than 1 when
Y’ = 0. No mere parabolic solution will suffice, but we can consider solutions of

slightly higher powers than 2. As we will see, they provide the y we need.

2.3. The Solution. Begin by writing the differential inequality in Condition (v)
for Ly as

X+ Jz]? ((X/)2 - ZXX") —x(xX) =X (|:Jz:|2 (X’)z) > 0.

If we consider the region where ¢ = |2|? < 2, then Ly is positive if y/ < 0 and the

sum of the first two terms is positive:

X+ 2 () = 2x") > 0

X X
= BT () =2y > 5T ()" = 2xx" > 0
g T (X/)2 > QXX”'
That is, we want
Lo
"
< — - 7
4 + 2x
Lo )
“stst 2y
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or

1 N2 1 N2
NP (') L n(x')
8 (2—n)x 8 2(2—n)x

A B

for any small  we choose. Note that we have split the right hand side into two pieces

"2
8  (2—m)x
and
"2
gt )"
8  2(2—n)x

We want v < A+ B or, equivalently, A — x" + B > 0.
Let x, solve

s W)
(29) ARG

so that x" = A — g < A. We use initial conditions from Conditions (i) and (ii)

corresponding to the ellipsoid to solve this differential equation
x(1)=e
V(1) = —1/c

and we integrate to find the exact form of y,:

(2.10) Xalt) = Gy — Gt [

with

We then obtain

and
2—n 1 o
" 2
= ————C5|Cy — Cyt|T=n.
X77 1 — n 1 — n 2| 1 2 |
Of special interest to us is the fact that when > 0, the solution y,, is a power
of order &7 2 + 1 # 2, so that the second derivative x; is no longer constant. As a

matter of fact, x; is a power of order ~ 7, so the size of x; is small when y, and
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the first derivative y; are small. This satisfies the requirement for a small x;’ noted
above. Let us make this analysis precise:

Define tg = C1/Cy & 1 + 2ce to be the minimum for x,, and note that

Xn(to) = X5 (to) = x7(to) = 0.
Xy increases with distance from #o; on the interval [1,%o], we have an upper bound

2 — n_
e 220 e, - e

T (=)
2—n o
Cler—n
(=2
B 1 1
S (2-n)c
Call this maximum
1 1
M2 — D) -
A(2—n)e
Then if we choose
2
ec
2.11
( ) < 24 ec?/2
we will have that
I m ,_ 1 7
—— = —— =M 0
§ M= g T M
which means that
gt n OG)
8  2(2—n)x,
(2.12) _ 1 .
g 277

>0 forallte[l,t]
where we have used the fact that x, satisfies the differential equation (2.9). Thus
the quantity B is positive, and we find that

1
X”:A—§<A<A+B,
or equivalently
A—x"+B>0.

Condition (v) is therefore true when ¢ € [1,ty), so we can conclude that the set Q

defined by

Q={z: |yl - (lz]?) <0}
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is strictly pseudoconvex in the region 1 < |z|* < t,.

Notice, however, that y,, shares the drawback of yo (as in Equation (2.8)) in that
it is not strictly positive — in particular, y(fo) = 0. In order to satisfy Condition (i)
and get an open neighborhood of the plane, we want to “lift” y, as we tried to
do with xo. That is, we want to choose y = x, + ¢ for some ¢ so small that our
differential quantity A — x” + B will stay positive. The reason that we expect to be
able to do so is that y,, unlike yg, has a second derivative which is zero when the
first derivative is zero.

Note that for this new y, x' = X% and y" = X%’ 80

1/(xy +9) < 1/xy

o (X 1 (x;)?
TR 22—y 8 2@=m(n 1)
1 ()
>§_§(2_77)X77
>0

Therefore our estimate B > 0 in Equation (2.12) still holds for our new y. We need
only look for a ¢ so small that A satisfies
Xy < A
L )

8 (2=nK)
B 0 ¢
8 (2=n)xy+9)
1 ok §
_l () (1_ )
8 (2—n)xy Xn+90

N—_————

X1 (by definition)

_1 " " 5

That is, we need

Now

xy = Const - |ty — ¢rotm
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so it increases with distance from #5. As a matter of fact, we can compute that

Xy < 1/16 whenever  is of distance less than

2\ 7 (2—n\ 2= 1
(2.13) s:(——ﬂ) 220 e
16 1y
from ¢g. We also have

2.14 = Const - |ty — ¢ 2Hnto(n) +9
( X

so that on the interval [1,¢9 — s], y, takes on its minimum

My = 021%"5?%7;
at the endpoint t = tg — s.
Choose
M,
2.15 )
( ) < 16My; — 1
so that
) 1
< .
My+9d ~ 16M;
Then on the interval [1,¢5 — s],
1 ) 1 )
T Xy > 5 — M
8 Xpt+d 8 Xy +0
1 )
> - — My———
8§ 'Mo+é
S 1 1
8 16
>0
and on the interval [ty — s, 1],
R S
8 "o+ d T8 16x,+0d
1 1
>-_ (1
—8 16 (1)
> 0.

Hence, by our choices of n and 4, we obtain A — y” + B > 0 when ¢t € [1,].
Therefore the Levi form of ¢ = |y|* — (x,(|x|?) + d) is strictly positive for |z|? in
the closed interval [1,%o]. We also know that the function ¢ = ¢, will give an open

neighborhood 0, of the ellipsoid and plane.
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E

\

FIGURE 3.1. The neighborhood € of B and Xp

By compactness of the interval [1,¢], there exists some interval [1,¢y + ] for a

k > 0 on which the Levi form of ¢ remains strictly positive. Choose a

61 € (x(to), x(to + &)).

Equation (2.14) implies that d; > d. Geometrically, d; is the height of y in a
region past the cylinder |z|? = ¢5 where the Levi form of ¢ is still remaining strictly
positive (see Figure 3.1). We will use this d; as a thickness for a neighborhood Qs of

the plane X p, and this choice will allow us to use Lemma 1.1 to link Qg to Qz.

REMARK 2.2. One can, of course, explicitly compute . If 5 and § are chosen
to be, say, half the size of their upper bounds given above in Equations (2.11) and
(2.15), then it is elementary to compute that x = O(e?).

We are now ready to use Lemma 1.1 to complete our construction. We combine
the neighborhood QQ above with neighborhoods Ql and §~23 of the ellipsoid and the
plane respectively to provide a Stein neighborhood basis element 2.

When we take the domain

Q=B =1{z : |2+ cy)> <1+2¢}
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and the domain 0, defined as above by Yy, they intersect on four polycircles on
Ei o, specified by |z|* = a1, |y|* = 1 — a1 and |z|* = ag > a4, |y|* = 1 — a; for some
ap,ay € RT.

Similarly, the neighborhood of ¥p given by Qs = {z : |y|> — 6, < 0} intersects
2 =

= az, |y|* = & and |z|?

0, in four more polycircles, specified by E = a4 > as,

ly|? = &, where
{t :tex;" (00— 0)} = {as.au}.
Define a neighborhood Q of X by
Q=000 U0,
where

O ={z: |z <a; and z € 0, = Eii2}

Q={z:a,<|z]*<ay andz€Q}

D=1z : ag < |z and |y|* < &}
That is, if we let
cly|* + |z|* — (1 + 2¢) if |2]? < ay
(2.16) plz) =Wl = xa(l2]*) =6 ifar <2’ <aq
ly[* — & if ay < |z?

then p is a defining function for €. We can use Lemma 1.1 on j to create a new
domain 2 which is a smooth neighborhood of the ellipsoid E and the plane ¥p and
which is strictly pseudoconvex everywhere along its boundary. The distance from 2
to EU Xp depends on ¢, so  forms an element in the Stein neighborhood basis we

seek:

THEOREM 2.3. There exists a collection of smoothly bounded, strictly pseudo-
convex sets 0y D Qy D -+ D Q; D -+ such thal
EuXp =)0,
jEN
2.4. Extensions. The final step above depended only on our ability to ensure
that the ball By,5. and the neighborhood §~23 of the plane intersected QQ transversally.

Thus, we have a corollary to the construction above:
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COROLLARY 2.4. If ¥ is a smooth totally real hyperplane in C* intersecting E

on the circle |x|* = 1 such that for points = € X near this circle we have

2
2 < og¢/c = (|22 =
ly|* <e where ( = 50 (|:1;| 1)
then there exists a smooth Stein neighborhood basis for the set X = EU X,

PRroOOF. This follows directly from the formula for § in Equation (2.15) and the

formula for s in Equation (2.13). Note that these formulas make it immediately clear

that § ~~ /. O

Similarly, it is possible to begin with a small perturbation of the ellipsoid E and
still find a Stein neigborhood basis for X.

We now consider the problem of extending our results to higher dimensions.

DEFINITION 2.5. A complex k-plane L in C* is a complex affine image of CF.
That is, there exists a linear map f : C* — L C C" such that
k
f(Zlv"ka) :p—l—za]‘Z]‘
i=1

for some constants a; and p in C”.
The following theorem is part of the general folklore:

THEOREM 2.6. A smoothly bounded domain @ CC C" with defining function
p is strictly pseudoconvex if and only if for every boundary point p € &) and every
complex 2-plane L through p such that dp € T(L) = Te(L), the domain QNL is strictly
pseudoconvex when considered as a subset of C*, i.e. if and only if f~1(QN L) is

strictly pseudoconvex in C2.

PRroor. CASE 1. (=) Since  is already pseudoconvex, with a complex tan-
gent space to its boundary &2 of n — 1 dimensions, L can contain only one complex
tangent vector A to ). Assume without loss of generality that A = (1,0,...,0).

Then the Levi form
n aZp
L (p7 )‘) = —
P j,%::I 62]62%
(2.17) *p
N 821851

>0
38
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by virtue of the strict plurisubharmonicity of p.

CASE 2. (<) Let A be a complex tangent vector to &) at p, and let v = dp|,.
Let L be the complex 2-plane defined by
flz1,22) = p+ Az + vz,

and define p to be the restriction of p to L. Using a translation and a complex
rotation, we can arrange L and € so that A = (1,0,...) and v = (0,1,0,...). Then
by assumption L;(p, A) > 0, and

Pp 0P
821851 N 821851'
Now

Pp <
'Cp(pv )\) = 92107, A
9%~
N 821851 )\1)\1

> 0.

Thus L£,(p, A) > 0 for all complex tangents A to &2, and Q is strictly pseudoconvex.

O

THEOREM 2.7. If Q@ C C" is a set with a C* defining function &(z) = |y|* —
X (|z|*) with the property that the sets

Q]‘kiz{ZEQ : ZIZOZfl%]vk}

are strictly pseudoconvexr when considered as subsets of C*, then Q is strictly pseu-

doconvez.

REMARK 2.8. This theorem is not an immediate consequence of Theorem 2.6,
because the sets €1, do not constitute all possible complex 2-planes through the
boundary &) (and containing its normal vector). However, Theorem 2.6 does point

the way to a proof:

PROOF. For a point p = (s1 + itt1,..., 8, +it,) € &, let M € O[n,R] be a real

orthogonal n x n rotation matrix such that

M-s=(x,0,...,0)
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for some x € R*. Since O[n,R] has n — 1 degrees of freedom, we can also specify

that
M- -t= (yl,yg,(),...,())
for some yq,y; € R. Because M is a rotation matrix, it is norm-preserving, so x = |s|
and 42 + 43 = [t
Now consider M as a rotation matrix in SU[n,C] that happens to have all real

entries. M -z is a complex rotation of coordinates, so M represents a holomorphic

(actually a complex linear) change of coordinates which we will denote by h(z). Note
M-(s+it)=M-s+iM -t,

so h preserves both |z| and |y|. Thus by the cylindrical symmetry of Q, we find that
hip) € Q < p €, i.e. Qis invariant under h. If X is a complex tangent vector to

&Y, then so is h(A).
The above argument allows us to reduce the question of pseudoconvexity at any
boundary point of € to that of pseudoconvexity at a point of the type
p = (@ +1y1,1Y2,0,...,0).

Thus we need:

LEMMA 2.9. Given a domain ) and a defining function ¢ as in Theorem 2.7, as
well as a point p € Q of the form p = (x1 + iy1,1y2,0,...,0) and a complex tangent
vector v to &Y at p, we can conclude that L (p,v) > 0.

Proor. Computing the partial derivatives of ¢ at p, we find that

d¢
(2.18) . = W ;X' =0
71p
when 7 > 2 and
0% 1 1
2.19 e R Ay
( ) azjazk ) 9 gk LiTEX 9 7k

when j > 1 or k > 1. Equation (2.18) implies that
v= (1, ... )

where (v1,14) is a complex tangent vector to 3, and v; is arbitrary for j > 2.
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From Equation (2.19) we obtain
n aqu

L(p,v) = v
) j,%—:l 02,07, "
2 82 n 82¢
= — 1V + — |1/¢|2
j%::l 9z,02, 1" ]Z_:Sazjazj J

|
= £ (p () + Y 5 i

=3
where £* denotes the Levi form taken in the complex 2-plane slice corresponding to

the z; and z; directions. By assumption this term involving L£* is positive, so we

obtain £ (p,v) > 0. O

According to Lemma 2.9, we see that L, (h(p),r) > 0 for any complex tangent
vector v to &) at h(p). Since A is invariant under h, given any complex tangent
vector A to k) at p, we have that v = h()\) is complex tangent at h(p). Section 3.1

of [11] shows that plurisubharmonicity is invariant under holomorphic maps, so

for all p and A. O

At last we are able to extend our results to higher dimensions:

COROLLARY 2.10. For any n > 2, there exists a Stein neighborhood basis for
the set EU Xp C C* where

E = {Z eC" : |z +cly|* < 1},
and
Yip = {Z cC : |y’ = 0}

with z = (v +1y1, ..., 0 +1y,) and |y|* = yi + -+ + y2.

PROOF. Given € > 0, let p(z) be defined as in equation (2.16) with |z|* and |y|?
defined now in C*. Then the domain €2 defined by p fits the hypotheses of Theorem

2.7, and hence is strictly pseudoconvex. According to Lemma 1.1, ) can be smoothed

to a smooth Stein neighborhood basis element for E U Xp. O
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3. Hyperbolic domains of the form |z|* — c|y|* — 1

We are ready to extend our results to the case of domains which are not ellipti-
cal. For now, however, we retain the cylindrical symmetry and consider hyperbolic
domains  with defining functions p of the form p(z) = |z|* — ¢c|y|* — 1. Since we
are interested in the strictly pseudoconvex case, we restrict our attention to the case

c<1.

(Q in dotted line)

FIGURE 3.2. The construction of a neighborhood for

Conceptually, our method is relatively simple: we bound ) behind two hyperbolic
domains €Q; of slightly higher curvature — one translated up a bit, and the other
translated down. Locally, where these new domains meet, their intersection forms
a strictly convex domain. This domain can therefore be locally bounded by a ball
B,, for which we already know how to construct a Stein neighborhood basis element.

See Figure 3.2 for a drawing of this construction.
42



We begin by specifying the translated hyperbolic domain £}y with more precision.
As we can see from the drawing, we want €); to just about intersect ) tangentially,
so that it will intersect a neighborhood g of ) transverally. We therefore consider

a defining function for ; of the form

pi(2) = el —d(lyl = n)’ = (1 +36).

The constant d introduces the higher curvature, while the constants 1 and § provide

the necessary translation. Note that the Levi form of |y| satisfies

~ 1 Yi Yk ¥
'C|y|2 (Z,)\) = Z m ((S]k J —k)\)\k)

Jk=1 |y| |y| !
NE 1
_ R sy - Al
Ayl 4]y
S WEE
Ayl Aly?
—0

so that
1—-4d
’601(27)‘) > T|)‘|2 >0

and therefore () is strictly pseudoconvex so long as d < 1. This leads us to choose

c+1
(3.1) d= 5
(3.2) § < 03(1%6)
and
B (1 —c¢
(3.3) n = 70(1 Fo)

That is, d is halfway between the constant ¢ and 1, while ¢ is an arbitrarily small

constant bounded above by a constant depending on ¢. We compute

(3.4) p(2) = pi(2) = (d =) ly* = 2ndly| + (dn* + 9)
(35) — (=) (il - )
(3.6) > 0.
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It is now clear that the constant i was chosen in such a way that d; intersects X}

tangentially. We compute to find out exactly where &), intersects :

(3.7) p(z) = pi(2) =0
1 2
= |’ = (77—1 J_r c) and |z[* =1+ ¢y’
(3.8) N

1+¢
1—¢

o(1
= |y|2:g and |:1;|2:1—|—5

e(l—e¢)

Since we actually want Q; to be an open neighborhood of Q, we make one final
adjustment; we replace 1 by a slighty smaller  and redefine p; and €y accordingly.
Then Q; will be an open neighborhood of € and will tranversally intersect a level

neighborhood Qg of Q defined by

Qo ={z : p(z) <~}

for some constant v > 0.

Now we are ready to show that it is possible to cut €y off with a ball (see Figure
3.2 again). If we consider the region where |y| is so small that |y| < nd, then we see
that

pi(z) = |2[* = (146 + n’d) + 2nd|y| + O(y[*).
Since |z| &~ 1, this is approximately linear in |y|. Choose a small ¢ < nd, and let
a=14+6+n"d—c

with

and
pal(z) = lz|* + y* — a.

Then for |y| < €, we see that

p1(2) = pa(2) = 2ndly| — (ly|* + €) + O(ly*)
= 2ndly| — ¢+ O(Jy[*)
<lyl—e¢

< 0.
44



At the same time, since
pi(2) 2 [zl + [y* = (1 + 8+ n'd).

for small |y|, we see that the intersection of B, and ©; must be transverse.

We have now constructed a neighborhood for Q which is strictly pseudoconvex,
and which looks like the ball B, for small |y|. From Corollary 2.10 in Section 2, we
know that we can construct a cylindrically symmetric Stein neighborhood basis for
the set B, UXp. Choose a neighborhood basis element €, from this Stein neigh-
borhood basis which is so close to the set B, U ¥p that it, too, has a transverse
intersection with Q. Let p2(z) be the defining function for .

Now we want to see that by taking appropriate local intersections of 2, {15 and
s, we can construct a Stein neighborhood basis element for Q U ¥p. We do so by
creating an appropriate defining function.

Since both ©; and ), are cylindrically symmetric, there exist constants asz, b3 > 0

such that
KNy ={z : || =as, |y|* = bs}.
Similarly, Equation (3.8) implies that there exist more constants
a1>1—|—5%>a2>0

and

5(1‘|’C) >bz>0

b e
1>c(1—c)

such that
Ko N Ky = {Z CeP=ay y = bl} U {Z D x? =ag, lyF = bz}.
Furthermore, our choice of ¢ ensures that by > bs. We therefore define
pa(z)  if y[P <
p(z) = pi(2) if by < Jy|* < by
plz) =7 if by < Jyf?
Finally, we use Lemma 1.1 to smooth p. We obtain a smoothly bounded strictly
pseudoconvex neighborhood basis element whose distance from € U ¥p decreases

with the arbitrarily small constant § chosen in Equation (3.2). We have therefore

proven:
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THEOREM 3.1. If Q) is a hyperbolic domain with a defining function of the form

p(z) = |z|* —cly[* =1

for some 0 < ¢ < 1, then there exists a Stein neighborhood basis for the set QU Xp

To state things a little more generally, we combine Theorem 3.1 with Corollary

2.10 to obtain

COROLLARY 3.2. Given any cylindrically symmetrical set ) with a defining
function of the form
E

p(2) =l —clyl” =1

for some ¢ < 1, there exists a Stein neighborhood basis for the set QU Xp.

4. The general hyperbolic case

DEFINITION 4.1. Let D C C* be a strictly pseudoconvex domain with a real
analytic defining function p(z). Let D, := {z € C* : p(z) < €}. A totally real
hypersurface ¥, of real dimension n, is a handle for D if there exists an ¢; > 0 such
that for all € € [0,¢), Sc := ¥ N D, is isomorphic to the n-sphere S™, and if for
points P along S, dp € T(X) and T(X)/dp C T (0D.).

We will use our results from the previous sections to construct a Stein neighbor-
hood basis for the set D U Y, when ¥ is a flat plane in C* and 9D N X is a circle.
First of all, note that there exists a complex linear change of coordinates taking ¥
to the zy-...-z, plane ¥p. We can therefore assume without loss of generality that
Y, = Xp and that dD N ¥ is the unit n-sphere in Xp.

Definition 4.1 and the flatness of our handle create certain restrictions on the

form p may take. Define

o =l [l

and

y =l gl

A priori, we know that the sphere Sy is in dD, so near Sy we can write

) =2 =14+ Y g (=) + 2 vimkg™ () + o (v |2 — 1)
7=1 j>k=1
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where the functions ¢/ and ¢’* are real analytic. However, the condition that dp €

T(X) along S, requires that the second term satisfy
d(ZMm%@)ET@U
7=1

which is possible only if ¢’(z) = 0 for all z. Hence

(4.1) p(2) =o' =1+ > wiung™ () + o Iy 1% 1) = 1)

7,k=1
From the fact that the Levi form of p is positive, we can glean information about
the size of the ¢*. Namely on Sy,
1 | R -
Lip, M) =5+ 5 >0 " (2)\xe > 0.
2 2570

Hence if we substitute A = (y1,...,y,), we find that

n

(4.2) Y =y <1y

j>k=1
Since (4.2) holds on the entirety of the compact set Sy, there exists a number ¢ < 1
such that

> ¢ iy < ey’
i>h=1
for all z € Sy. Hence in a neighborhood of Sy,

(4.3) p(z) <pi(z) = |)" —cly'] — L

It is now easy to see how we must approach the proof of:

THEOREM 4.2. Let D C C* be a strictly pseudoconver domain with real analytic
boundary 0D, and let ¥ be a flat (that is, planar) handle for D. Then there exists a
Stein neighborhood basis for the set D U Y.

PROOF. As before, we will use Lemma 1.1 to define an arbitrarily small basis
element in such a neighborhood basis.

Assume without loss of generality that we have a defining function p for D of
the form (4.1), and let p; be as in equation (4.3). A level set D, for a very small ¢
will intersect the set D; defined by p; transversally. Hence we use these two sets to

construct a Stein neighborhood basis element for D. O
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5. The general strictly pseudoconvex case

We are finally ready to state and prove the most general case of our results on

handles.

THEOREM 5.1. Let D C C* be a strictly pseudoconver domain with boundary
dD, and let X be a real analytic handle for D. Then there exists a Stein neighborhood
basis for the set D U Y.

PRrOOF. Taking € from Definition 4.1 (the definition of a handle), we define the

compact set
K=YnD\D.

Let a real analytic function f : K — C* take K to the totally real z;-...-z, plane,
in such a way that

fODNK) = {Z 2] = 1}
and

FENaDy c{z + |af* > 1},
Then since f has a holomorphic extension locally for each zy € K, there exists a
holomorphic extension F' of f in a neighborhood U of K (see, for example, the
partion of unity argument in Chapter 17 of [16]).

Note that the proof of Theorem 4.2 simply uses Theorem 3.1 locally in a neigh-
borhood of the plane ¥p. We can therefore find a local Stein neighborhood basis in
F(U), so the inverse image will be a local Stein neighborhood basis in UU. OQutside of
U, we can intersect with level sets D5 and a Stein neighborhood basis of the entire
handle ¥, to obtain a global Stein neighborhood basis for D U ¥.

O

6. Handles of lower dimension

DEFINITION 6.1. Let D C C" be a strictly pseudoconvex set with a real analytic
defining function p(z). Let D, :={z € C* : p(z) < €}. A totally real hypersurface
Y is a handle of dimension { for D if there exists an €y > 0 such that for all € € [0, ),
S, := ¥ NaD, is isomorphic to the (-sphere S* for some ¢ < n, and for points P along

S..dp € T(S) and T(X)/dp C T (AD.).
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The main result of this section is that Theorem 5.1 still holds in the case that the
handle ¥ is lower dimension than the maximal n. In order to prove this, we need to

verify that the results of Sections 2 through 3 are true for lower-dimensional handles.

LEMMA 6.2. If
Q.= {Z eC | P+ P+ ey —1< 0}
for some ¢ > 0 and
Yipi= {Z cC 2 )P+ = 0}
where

2

R R L T

then there exists a Stein neighborhood basis for the set QU Yp

PRrROOF. For this proof, we will need to know that ou defining function is not just
plurisubharmonic in complex tangent directions, but rather plurisubharmonic in all
directions. Take the defining function p(z) for an element of our Stein neighborhood
basis for the ball and the n-dimensional totally real plane, where in the appropriate
region we have that

p(2) = lyl* = x, (12?)
Then for some sufficiently large constant A, we have that p+ Ap? is strictly plurisub-

harmonic in a neighborhood of the boundary. There exists a new function
Y:R—=R
such that
p(2) + Ap(2)” = [yl = X (|=]?) -
Replace p by p + Ap?, and , by X.
Given a small € > 0, we follow the form of equation (2.16) to define a cylindrically
symmetrical neighborhood of QU ¥p:

yl* + |2 = (1 + 2¢) if 2 < a
(6.1) plz) = QP+ yl = xn () + 6 if oy < 277 < ay
|2/ + [y|* — 61 if ag < [27|?

with the same constants 1, and «a; as in equation (2.16). Note that

L,(z,A) = {

1 if 2> < ay
P S (PaceP NP i < e
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so we only need to verify that the set {z : p(z) < 0} is strictly pseudoconvex in
the region a; < |z*|* < a4. Writing |y|* = |y*|* + |v/|*, we see that when { < n, p
becomes

p(z) =[P+ 1y + 1y = xo (|27 ?).

p*(2)

so that for a vector A = A* 4+ X', the Levi form is
L,(2,0) = | NP+ L0 (2, M%)

each term of which is larger than 0 by assumption. O

LEmMMA 6.3. If
0= {Z eC | P+ 2=y’ —1< 0}
for some 0 < ¢ <1 and
Yip 1= {Z eC : 2P+ 1y = 0}

where

|2*]? =2+ + 2]
and

/| i=af o+l

then there exists a Stein neighborhood basis for the set QU Yp

PRrROOF. The proof of this lemma is a sraightforward adaptation of the proof of
Theorem 3.1. The only difference is that the set 25 is now taken to be a Stein

neighborhood basis element from Lemma 6.2. O

THEOREM 6.4. Let Q C C* be a pseudoconver domain with real analytic bound-
ary &Y, and let ¥ be a handle of dimension { for Q. Then there exists a Stein
neighborhood basis for the set QU X,

PRrROOF. The proof of this theorem also is a sraightforward adaptation. The proof
of Theorem 5.1 may be taken with the substitution of using Lemma 6.3 in place of

Theorem 3.1. O
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APPENDIX A

Detailed Levi Form Calculations

We want to obtain the Levi form of a function ¢ : C?* — C? of the form ¢(z) =

(ly|* — x (Jz|*)) in terms of derivatives of x. To do so, we compute 833‘% in terms of
J

derivatives of . Since |z|* = a7 + 23 and |y|* = y] + y3, the chain rule yields

29 (i) (- () = - ()

so that

¢ o 1 d .0 ' 2 . _ I x 2.
5o =5 (o * 1) (o (oF) =) = 5= 5 ain

and

0 L) (o () ) = e

821852 N 5 81'2 8y2
Similarly, we obtain
I’op B
02,071 TArx

a2¢ _ 1 _ X' 2.0
822852 2 2

so that the Levi form for ¢ at any complex tangent vector A to & is

1 ! — —
/3(957 )\) = §|)\|2 - [(X? + :I?fX”) AL+ 51?151?2X”)\1)\2

!
oY A2t + (X? + x%x”) )\2)\_2]

Now a complex tangent vector A is defined by > %)\i = 0, so in our case where

the dimension is 2, we may take

v (99 09
N 8227 821
= (—uy; — xox, iy + :Ile/)
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so that

1 X
L(&,A) = 3 (v + 93 + (@1 + 2D ()?) - ( 5+ xfx”) (3 + =3 (x))
— z122X” (_ylyz — L1T2 (X/)2 —i(z1y2 — x2y1)X/)

— z122x” (_ylyz — L1T2 (X/)2 +i(z1y2 — x2y1)X/)

!
(é + x%x”) (vi + 23 ()7

3
= (ol P 0) — Y e O (a2 4 a?)
—2z723 ()" X" + 2120y 52)
+ 2273 ()" X
= 2 (P + e (6O) = 5x (ol + Je? (1))

— (212 — 22y1)* X"

1
= (P 2P (1)) (1= X) = (g = o X
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