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Factor Models: Motivation

Want to measure properties of a portfolio 
of credit-risky securities

Expected and unexpected P&L
Standard deviations or other moments
Tail sizes

Portfolio members are correlated



Zero Factor: Moody’s Binomial

Portfolio of N uncorrelated companies, each 
with the same LGD (loss given default) L, 
identical probabilities pd of default.

P(Total Loss≥ T ) =
N

!
i="T/L#

(
N

i

)
pid(1− pd)N−i



Binomial Results

X

0.2

0.4

0.6

0.8

1
Prob Loss>=X, N=500, p_d=90bp



Use Of Binomial

Correlation obviously exists, and LGDs 
differ; choose NB  and LB to best capture 
“equivalent” binomial to actual portfolio
Obviously, there exist choices that will 
match (μ,σ)
One hopes other important portfolio 
behavior (e.g. tails) is similar



Problems With Binomial

Choosing NB  and LB is an art, not a 
science (done sometimes in collateralized 
world)
Most important properties such as 
conditionals and tail values differ 
between a “real” model and binomial



Single Factor Models

Capture portfolio behavior as being 
driven by a global factor, plus 
idiosyncratic elements
Each firm has a driver variable Xn, plus a 
barrier Bn for Xn whose crossing will 
result in default (think of assets and 
liabilities)



Single Factor: Example Model

A global driver variable Z, plus a unique 
idiosyncratic variable Wn for each firm and 
a correlation Rn  determines the value of X 

Xn = RnZ+
√
1−R2

n
Wn

Default occurs for those n such that
Bn > Xn



Single Factor Measurements
Simulations from distributions ΩW, ΩZ for W and 

Z are a way of computing e.g. quantiles or tail 
probabilities.  However, the real advantage of 
single factor models is when the Bn, Rn and 

LGDs Ln are all resp. equal.  Then
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Basel II

The Basel II risk computations envision a 
single factor model as above, with the 
general idea that ΩW, ΩZ  will be normal

The integrations are easy to perform when we 
make overly ambitious assumptions, but the 
model has obvious flaws.
Better correlation can be captured at little 
cost if we are relaxing assumptions anyway



Multifactor Motivation

We want to capture a risk correlation 
structure of defaults (and/or default risk)
Companies usually just default once.  We 
have no time series to estimate from.
Even default risk has relatively sparse 
time series data (CDS spreads, ratings).
Directly estimating correlations is hard.  
Multifactor models have fewer variables.



Definition of CDS, Asset Swaps

A Credit Default Swap specifies a stream of 
payments to firm A from C, who usually owns 
B.  If O defaults, C gives B to A, and receives 
the principal & interest value of B
An Asset Swap trades B from C to A, and C 
pays LIBOR plus a spread.  A pays par value, 
plus fixed coupons at the bond rate.

Consider a corporate bond B (issued 
by a company we call O) with periodic 

interest payments



Multifactor Model Form

Based on M stochastic drivers plus 
idiosyncratic risk, a company changes 
riskiness or even defaults
Commonly, we consider a ratings 
migration model, with discrete riskiness
CreditMetrics is the well-known example
A default-only model would be a two-state 
migration model



Sources Of Correlation Info

In the real world measure, we have time 
series of ratings, financial ratios, KMV 
EDFs (Expected Default Frequencies).
Willing to believe asset correlations?
In the pricing measure, we have fewer 
sources, plus recovery rate issues

Bond prices are notoriously dirty
A few years’ CDS time series data.



Measure Mapping

We assumed correlation is unaffected by 
change of measure (essentially, that it is 
not priced by the market), or
We had a means of mapping between 
actual and pricing measures by, say, 
estimating liquidity spread and market 
prices of the various risks

We could use data from the “wrong” measure if



Example: KMV Factor Model

Begin with a set of independent uniform 
normally distributed global drivers Gi

These drive normal region and industry 
factors Cj, which also have idiosyncratic 
components cj

The Cj then drive normal variables Xn for 
each firm, with idiosyncratic components xj



Each firm’s Xn depends on all the Cj and of 
course the Gi, in addition to its own 
idiosyncratic variable.

Multifactor models with independent firm-
specific components allow for efficient 
simulation

Relatively small number of drivers even for 
large portfolios
Don’t need singular value decomposition

Xn = xn+!xn jCj = xn+!xn j
(
c j+!c jiGi

)



KMV normalizes the Xn to have unit 
variance.

Each firm has a dependency coefficient R, 
such that xn has variance 1-R2.

If we need random variables from some 
other distribution A, e.g. Student’s T, we 
can (usually) map it using the distribution 
functions

Yn = A
−1 (N(Xn))



To create a factor model, we must first 
choose factors, and have a way of obtaining 
dependence of our random variables on them
Start with historical time series data
Possible techniques include: hand-selecting 
factors (e.g. KMV regions and industries), 
doing principal component analysis, cluster 
analysis, stepwise regression, and so on

Whence Factors?



KMV’s approach is hybrid.  The global 
factors are independent, and probably came 
from PCA.  The intermediate factors are 
chosen by humans, with loadings a subjective 
matter

A simpler factor model could choose, say, the 
first three principal components, and then for 
each firm set the loadings to the dot products

But, still need to deal with firms not in the 
time series data set.  Maybe use proxies.



Once we have a factor model for 
stochastic drivers, we still need to choose 
a risk model

Ratings migration
Copulas
Spreads and defaults

After the Factor



Ratings Migration

Each firm has a sequence of transition 
boundaries for Xn, endpoints of “buckets”

Ratings 1... Nr  from worst to best

The new rating (let default=rating 0) is 
determined by which bucket Xn  fell in

Using a non-normal Yn  gives slightly 
different transition correlations



Copula Models

A copula assumes we start with known 
default time distributions for the firms, 
and imposes a correlation structure on 
the default times
We will see more of these in the afternoon
Our factor model may be used to set the 
coefficients of the correlation structure in 
our copula function of interest.



Spread Models

We can use our factor-derived variables 
to drive equations for the evolution of 
each firms spread (say, according to 
Ornstein-Uhlenbeck processes)
Several possibilities exist for 
incorporating defaults
Shouldn’t spreads jump up if somebody 
defaults?



Fitting A Factor Model

Generally speaking, it very hard to fit 
correlation variables to credit or default 
data.  Recovery rates and small sample 
counts interfere
Easier to fit correlations to “equity” time 
series
Transition matrix fits are not too hard



EDF Distribution, Factor 
Migration

1000 Companies, Quarterly, 10 yrs w/ replacement
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EDF Distribution, Factor 
Migration

1000 Companies, Quarterly, 10 yrs w/ replacement
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Credit Options



What Are Credit Options?

Basic Types:
Embedded bond or CDS options, tenor 
typically several years.  Often knockout.
Options on CDS or asset swaps, tenor 
typically << 1yr.  Asset swaptions are 
much less vanilla than the swaps.
Embedded convertible bond options (but 
spread dynamics are usually ignored)



Credit Options Comments

Knockout clauses on CDS options make 
the accounting simple in case of default.
Liquidity is highest in 1-5 month tenors 
Straddles are popular (as volatility plays 
or correlation hedges)
Seniority (recovery rate) issues can 
interfere with the comparison of credit 
spreads in different instruments.



Trading Motivation

Speculation on credit spreads or spread 
volatility
Regulatory satisfaction
Yield enhancement
Hedging exposures (e.g. project finance 
loans)



CDSwaption: Available Models

A Black (1976) formula serves vanillas:
Volatility skew corrects for 
distributional errors
Other models are significant only in 
that the terminal distribution differs.  
This is equivalent to a skew.

Cancellable swaps require a tree, 
especially for interest rate correlation



Black (1976) Applied
Consider pricing a knockout in the survival 
measure (Schönbucher) with trivial spread 
dynamics (flat, parallel shifts)
Fwd spread s, strike sK spread vol σ, call/
put indicator g in {1,-1}, zero recovery 
zero-coupon bond prices Bd(t), underlying 
swap payments at times tk. Option value is

!
k

Bd(tk)g(sN(gd+)− sKN(gd−)) , d± =
log s

sK
± "2T

2

"
√
T



Hedging

Primary hedge DV01 (sensitivity to 
underlying spread).  Use proxies at times.
Also important for longer T: jump risk
Trading both 1 and 5 year underlying 
tenors can do both, especially if spread 
curve has parallel shifts
Push the hedges to the flow traders



Structuring With Options

Demand for credit options comes from 
cancelable loans, project finance 
extensible loans, and other credit 
exposures of uncertain size.
Correlation of credit spreads and interest 
rates can be important for these longer 
tenors.



Obtaining a Volatility

More liquid names will have a 
satisfactory time series of spread data.
Though skew should appear, it is 
basically unavailable from market data.  
Use another distribution (e.g. gamma)?
Similar traded names as proxies
Last ditch: guesstimate from equity vol



But Equity Vol Is Not Enough!
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Basket & Tranche Options

Just barely starting up; an active area of 
research
Attractive to, say, reinsurers with variable 
tranche exposures
Index credit swaptions



Tranche Option Pricing
Want a multi-name spread and default 
model consistent with

single name default probability curves
default swaption prices
tranche prices

Influential ideas: “usual” copulas have 
difficult conditionals.  Schönbucher and 
Rogge use a generalized Archimedean 
copula (e.g. Clayton)



The Effect Of Correlation
ATM TraXX basket option value 

by Clayton gamma factor

0.5 1 1.5 2 2.5 3

2.55

2.6

2.65

2.7

2.75

Option Value By Clayton Parameter



Good fitting versus overparameterization

Correlation regimes

Require a reasonable way for observed 
defaults to influence spreads of survivors

Possible spread dynamics: Ornstein-
Uhlenbeck (but what does a negative 
spread mean?!), Cox-Ingersoll-Ross

Vol sources; knockout vol much lower
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